MASTER'S COMPREHENSIVE EXAM IN Math 603-MATRIX ANALYSIS
 January 2020

Solve any three (out of the five) problems. Show all work. Each problem is worth ten points.
Q1 Let $\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{p}\right\}$ be a basis for the subspace X of the vector space V.
(a) Show that $\left\{u_{1}+u_{2}, u_{1}-u_{2}, u_{3}, \ldots, u_{p}\right\}$ is a basis for X.
(b) Suppose two nonzero vectors $v, w \in V$ are such that $\operatorname{span}\{v, w\} \cap X=\{0\}$ and v is not a multiple of w. Let $Y=\operatorname{span}\left\{u_{1}, u_{2}, v, w\right\}$. Find $\operatorname{dim}(Y)$, and prove your finding.
(c) Consider the subspace Y given in (b). Find a basis for $X \cap Y$, and prove your finding. Also determine $\operatorname{dim}(X+Y)$ (without proof).

Q2 (a) Consider the inner product on $\mathbb{R}^{n \times n}$ given by $\langle A, B\rangle:=\operatorname{trace}\left(A^{T} B\right)$ for $A, B \in \mathbb{R}^{n \times n}$. (i) Show that a symmetric matrix in $\mathbb{R}^{n \times n}$ is orthogonal to a skew-symmetric matrix in $\mathbb{R}^{n \times n}$. (ii) Show that for any $A \in \mathbb{R}^{n \times n}$, there exist $B, C \in \mathbb{R}^{n \times n}$ such that $A=B+C$ and $\langle B, C\rangle=0$.
(b) Let $P \in \mathbb{R}^{n \times n}$ be the matrix representation of a projector onto the subspace X along the subspace Y in \mathbb{R}^{n}. Show that each eigenvalue of P is either 0 or 1 , and determine if P is diagonalizable.
(c) Given a matrix $A \in \mathbb{R}^{m \times n}$, let S be the matrix representation of the orthogonal projector onto the range of A. Show that $A^{T} S=A^{T}$.

Q3 Let A and B be $m \times n$ and $n \times p$ matrices over \mathbb{R}, respectively.
(a) Prove that $\operatorname{dim} N(A B) \leq \operatorname{dim} N(A)+\operatorname{dim} N(B)$. (Hint: let $V=\left\{x \in \mathbb{R}^{p}: A B x=0\right\}$, $W=\left\{y=B x: x \in \mathbb{R}^{p}, A y=0\right\}$, and apply the rank plus nullity theorem for operator $\left.T_{B}: x \in V \mapsto B x \in W.\right)$
(b) Prove that $\operatorname{rank}(A)+\operatorname{rank}(B) \leq \operatorname{rank}(A B)+n$.

Q4 Let $A \in \mathbb{R}^{n \times n}$.
(a) Define what it means for A to be diagonalizable, and show that if A has pairwise distinct eigenvalues, then A is diagonalizable. You may restrict your argument to $n=3$.
(b) Show that if A is diagonalizable and $k \geq 2$ is integer, then there exists an $n \times n$ matrix B, perhaps with complex entries, so that $B^{k}=A$. What is the largest possible number of such matrices $B \in \mathbb{C}^{n \times n}$? (This number depends on n and k.)
(c) Find all matrices B so that $B^{2}=A$ for

$$
A=\left[\begin{array}{rr}
-2 & -3 \\
6 & 7
\end{array}\right] .
$$

You may leave them in factored form.
Q5 (a) If $A \in \mathbb{R}^{m \times n}$ has rank r show that there exist full-rank matrices $B \in \mathbb{R}^{m \times r}$ and $C \in \mathbb{R}^{r \times n}$ so that $A=B C$.
(Hint: begin with the equality $A=G E_{A}$ with G nonsingular and E_{A} being the reduced row echelon form of A.)
(b) Conversely, if $A \in \mathbb{R}^{m \times n}$ and it can be written as $A=B C$ with $B \in \mathbb{R}^{m \times r}$ and $C \in \mathbb{R}^{r \times n}$ with B and C of full-rank r, then $\operatorname{rank}(A)=r$.
(c) Show that with A, B, C as in (a), the matrix $B^{T} A C^{T} \in \mathbb{R}^{r \times r}$ is nonsingular.

