MASTER'S COMPREHENSIVE EXAM IN
 Math 600 -REAL ANALYSIS
 August 2012

Do any three (out of the five) problems. Show all work. Each problem is worth ten points.

Q1 A real valued function f on a metric space (M, d) is said to be upper semicontinuous if for all $\lambda \in \mathbb{R}$, the set $\{x \in M \mid f(x)<\lambda\}$ is open in M.
(a) Provide the open cover definition of compactness of a set in M.
(b) Suppose M is compact and that $f: M \rightarrow \mathbb{R}$ is upper semicontinuous. Show that f is bounded above and attains a maximum value on M. (HINT: To show f is bounded above consider sets $\{x \in M \mid f(x)<n\}$ for $n \in \mathbb{N}$. To show attainment of maximum do a proof by contradiction by considering the supremum of the set of values attained by f.)

Q2 (a) Provide the definitions of uniform convergence of a sequence (f_{n}) of functions $f_{n}: A \rightarrow$ \mathbb{R} to a function $f: A \rightarrow \mathbb{R}$ where $A \subset \mathbb{R}$.
Rest of Q2 relates to the series of functions

$$
\sum_{n=1}^{\infty} \frac{x^{2}-n x}{n^{3}+n x},
$$

of a real variable x on the domain $[0, \infty)$.
(b) Show that the series converges pointwise on $[0, \infty)$. Does it converge uniformly on $[0, \infty)$? Justify your answer.
(c) Is the sum continuous on $[0, \infty)$? Justify your answer.
(d) Is the sum differentiable on $(0, \infty)$? Justify your answer.

Q3 For $n \in \mathbb{N}$ let $f_{n}: A \rightarrow \mathbb{R}$ where $A \subset \mathbb{R}$.
(a) State the definition of equicontinuity for the sequence $\left(f_{n}\right)$ and state the Arzela - Ascoli theorem in this context.
(b) Let $A=[0,1]$ and let f_{n} be defined by

$$
f_{n}(x)=\frac{1}{\left(1+\frac{x}{n}\right)^{n}} .
$$

Prove that f_{n} converges uniformly on A to some function f. What is f ?

Q4 (a) State the contraction mapping theorem (also known as the Banach fixed point theorem).
(b) Suppose (M, d) is a compact metric space and for $n \in \mathbb{N}$ let $f_{n}: M \rightarrow M$ be contraction mappings. Suppose the sequence $\left(f_{n}\right)$ converges uniformly on M to $f: M \rightarrow M$. Prove that f has at least one fixed point.

Q5 (a) Provide the definition of the derivative of a map $F: V \rightarrow W$ at $x \in V$ where V and W are (possibly infinite dimensional) normed vector spaces (over \mathbb{R}).
(b) Let $C([0,1])$ be the Banach space of continuous functions from $[0,1] \subset \mathbb{R}$ into \mathbb{R}. Let $F: C([0,1]) \rightarrow \mathbb{R}$ be defined by

$$
F(f)=\frac{1}{2} \int_{0}^{1}(f(t))^{2} d t-\left(\int_{0}^{1} f(t) d t\right)^{2}
$$

for all $f \in C([0,1])$. Prove directly using the definition of derivative that F is differentiable at every $f \in C([0,1])$ and that the derivative is given by

$$
D F(f)(g)=\int_{0}^{1} f(t) g(t) d t-2\left(\int_{0}^{1} f(t) d t\right)\left(\int_{0}^{1} g(t) d t\right)
$$

for all $f, g \in C([0,1])$.
(c) Show that F has an extreme value at f if and only if f is the zero function. Is the extreme value a local minumum, a local maximum or neither? Explain.

