Masters Comprehensive Exam in Matrix Analysis (Math 603)
 August 2012

Do any three (out of five) problems. Show all your work. Each problem is worth 10 points.
(Q1) (a) Let $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ be a basis of an n dimensional vector space \mathcal{S}. Show that if a vector β in \mathcal{S} has the property that it can be expressed as a linear combination of every $n-1$ vectors from $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$, then $\beta=0$.
(b) Find the rank and nullity of the of the following matrix (as a linear transformation on R^{3}):

$$
A=\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right]
$$

(Q2) Let A be a real $n \times n$ matrix.
(a) Show that $A=0$ if $A A^{T}=0$.
(b) Show that A is symmetric if and only if $A^{2}=A A^{T}$.
(Q3) Let A be a $p \times n$ matrix and B be an $n \times m$ matrix. Denote $\mathcal{L}_{0}=\left\{x \in R^{m}: A B x=0\right\}$ and $\mathcal{L}_{1}=\left\{y \in R^{n}:\right.$ there exists $x \in \mathcal{L}_{0}$ such that $\left.y=B x\right\}$.
(a) Show that $\operatorname{dim} \mathcal{L}_{1}=\operatorname{rank}(B)-\operatorname{rank}(A B)$.
(b) Show that for any $n \times n$ matrices A, B and $C \operatorname{rank}(A B)+\operatorname{rank}(B C) \leq \operatorname{rank}(B)+$ $\operatorname{rank}(A B C)$.
(Q4) Let A be a complex $n \times n$ matrix satisfying the equation $I+A+A^{2}=0$.
(i) What are the eigenvalues of A ?
(ii) Show that A and $I+A$ are invertible.
(iii) Express $\operatorname{det}(I+A)$ in terms of $\operatorname{det}(A)$.
(iv) Give an example of such a matrix.
(Q5) Let P be an $n \times n$ real matrix satisfying the conditions

$$
P^{T}=P \quad \text { and } \quad P^{2}=P .
$$

(Such matrices are called projections.)
(i) Show that the eigenvalues of P are real. What are they?
(ii) Show that $x^{T} P x \geq 0$ for all $x \in R^{n}$.
(iii) If $\operatorname{Ker}(P)$ and $\operatorname{Ran}(P)$ denote, respectively, the kernal (=null space) and range of P, show that R^{n} is the direct sum of $\operatorname{Ker}(P)$ and $\operatorname{Ran}(P)$.

