Masters Comprehensive Exam in Matrix Analysis (Math 603)

 January 2013Do any three problems. Show all your work. Each problem is worth 10 points.

1. Let $\mathcal{A}=\left\{v_{1}, v_{2}, v_{3}\right\}$ be a basis in R^{3}.
(a) Show that $\mathcal{B}=\left\{v_{1}+v_{2}, v_{2}+v_{3}, v_{3}+v_{1}\right\}$ is also a basis of R^{3}.
(b) For the linear transformation $L: R^{3} \rightarrow R^{3}$ defined by $L\left(v_{1}\right)=2 v_{1}, L\left(v_{2}\right)=2 v_{2}$ and $L\left(v_{3}\right)=2 v_{3}$, find the matrix representation of L with respect to the bases \mathcal{A} and \mathcal{B}.
2. Let $T \in \mathcal{L}(V)$ be a linear operator on an n-dimensional real inner-product space $(V,\langle\cdot, \cdot\rangle)$ whose singular value decomposition is given by two orthonormal bases $\left(u_{1}, u_{2}, \ldots, u_{n}\right),\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ of V and singular values $\sigma_{1} \geq \sigma_{2} \geq \ldots, \sigma_{n} \geq 0$, such that

$$
T x=\sum_{j=1}^{n} \sigma_{j}\left\langle x, v_{j}\right\rangle u_{j}, \quad \forall x \in V
$$

(a) Prove that for any $m<n$ we have

$$
\left\|T x-\sum_{j=1}^{m} \sigma_{j}\left\langle x, v_{j}\right\rangle u_{j}\right\| \leq \sigma_{m+1}\|x\|, \quad \forall x \in V .
$$

(b) What are the eigenvalues and eigenvectors of $T T^{*}$?
(c) Find an orthonormal basis for the null space of $T, \operatorname{Ker}(T)$, and a basis of the range space of T, Range (T) when $n=10$ and $\sigma_{7}>\sigma_{8}=0$.
3. Let A be an $m \times n$ matrix with rank m.
(a) Prove that there is an $n \times n$ orthogonal matrix Q and an $m \times m$ upper-triangular matrix R_{1} with strictly positive diagonal entries such that

$$
A^{T}=Q R \text {, where } R \text { is the } n \times m \text { matrix } R=\left[\begin{array}{c}
R_{1} \\
0
\end{array}\right] .
$$

(b) Find an orthonormal basis for the column space of $A^{T}, \operatorname{Col}\left(A^{T}\right)$ and an orthonormal basis for the nullspace of A, $\operatorname{Nul}(A)$.
(c) Prove that for any $b \in \mathbb{R}^{m}$ the minimization problem

$$
\begin{gathered}
\min \|x\| \\
\text { such that: } A x=b,
\end{gathered}
$$

has a unique solution x^{*} and that $\left\|x^{*}\right\|=\left\|\left(R_{1}^{-1}\right)^{T} b\right\|$.
4.
(a) Let A be $m \times m$ and $\operatorname{det} A \neq 0$ prove that

$$
\operatorname{det}\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\operatorname{det}(A) \operatorname{det}\left(D-C A^{-1} B\right)
$$

(b) If A, B, C and D are all $m \times m$ matrices and $A B=B A$, prove that

$$
\operatorname{det}\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\operatorname{det}(D A-C B)
$$

(Hint: Use part (a).)
5. Let $A=\left[a_{i j}\right]$ be a complex square matrix.
(a) If $\operatorname{tr}(A)$ - trace of A - is the sum of all its eigenvalues, show that

$$
\operatorname{tr}(A)=a_{11}+a_{22}+\cdots+a_{n n}
$$

(b) Show that if $A^{n}=0$, then every eigenvalue of A is zero.
(c) Prove the converse in (b).

