Masters Comprehensive Exam in Matrix Analysis (Math 603) January 2013

Do any three problems. Show all your work. Each problem is worth 10 points.

- **1.** Let $\mathcal{A} = \{v_1, v_2, v_3\}$ be a basis in \mathbb{R}^3 .
 - (a) Show that $\mathcal{B} = \{v_1 + v_2, v_2 + v_3, v_3 + v_1\}$ is also a basis of \mathbb{R}^3 .
 - (b) For the linear transformation $L: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $L(v_1) = 2v_1$, $L(v_2) = 2v_2$ and $L(v_3) = 2v_3$, find the matrix representation of L with respect to the bases \mathcal{A} and \mathcal{B} .

2. Let $T \in \mathcal{L}(V)$ be a linear operator on an n-dimensional real inner-product space $(V, \langle \cdot, \cdot \rangle)$ whose singular value decomposition is given by two orthonormal bases $(u_1, u_2, \ldots, u_n), (v_1, v_2, \ldots, v_n)$ of V and singular values $\sigma_1 \geq \sigma_2 \geq \ldots, \sigma_n \geq 0$, such that

$$Tx = \sum_{j=1}^{n} \sigma_j \langle x, v_j \rangle u_j, \quad \forall x \in V.$$

(a) Prove that for any m < n we have

$$||Tx - \sum_{j=1}^{m} \sigma_j \langle x, v_j \rangle u_j|| \le \sigma_{m+1} ||x||, \quad \forall x \in V.$$

- (b) What are the eigenvalues and eigenvectors of TT^* ?
- (c) Find an orthonormal basis for the null space of T, Ker(T), and a basis of the range space of T, Range(T) when n = 10 and $\sigma_7 > \sigma_8 = 0$.
- **3.** Let A be an $m \times n$ matrix with rank m.
 - (a) Prove that there is an $n \times n$ orthogonal matrix Q and an $m \times m$ upper-triangular matrix R_1 with strictly positive diagonal entries such that

$$A^T = QR$$
, where R is the $n \times m$ matrix $R = \begin{bmatrix} R_1 \\ 0 \end{bmatrix}$.

- (b) Find an orthonormal basis for the column space of A^T , $Col(A^T)$ and an orthonormal basis for the nullspace of A, Nul(A).
- (c) Prove that for any $b \in \mathbb{R}^m$ the minimization problem

$$\min \|x\|$$

such that: $Ax = b$,

has a unique solution x^* and that $||x^*|| = || \left(R_1^{-1}\right)^T b||$.

(a) Let A be $m \times m$ and det $A \neq 0$ prove that

$$\det \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \det(A) \det(D - CA^{-1}B).$$

(b) If A, B, C and D are all $m \times m$ matrices and AB = BA, prove that

$$\det \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \det(DA - CB).$$

(Hint: Use part (a).)

- **5.** Let $A = [a_{ij}]$ be a complex square matrix.
 - (a) If tr(A) trace of A is the sum of all its eigenvalues, show that

$$tr(A) = a_{11} + a_{22} + \dots + a_{nn}$$

- (b) Show that if $A^n = 0$, then every eigenvalue of A is zero.
- (c) Prove the converse in (b).