PhD COMPREHENSIVE EXAM IN ORDINARY DIFFERENTIAL EQUATIONS

August 2013

Do any 3 of the following 4 problems. Show all work. Each problem is worth ten points.

Q1. Consider a linear system $\dot{x} = Ax$ where A is a 6×6 real matrix. Suppose

$$J = \left[\begin{array}{cc} J_s & 0\\ 0 & J_c \end{array} \right],$$

is the (complex) Jordan form of A where J_s is $n_s \times n_s$ and has all eigenvalues with negative real part and J_c is $n_c \times n_c$ and has all eigenvalues with zero real part. It is thus assumed A has no eigenvalues with strictly positive real parts. For each of the following scenarios describe the stability of origin (asymptotically stable, stable but not asymptotically stable, unstable).

- (a) $n_s = 6, n_c = 0.$
- (b) $n_s = 5, n_c = 1.$
- (c) $n_s = 4$, $n_c = 2$ and A is non-singular.
- (d) $n_s = 4$, $n_c = 2$ and the null space of A has dimension 1.
- (e) $n_s = 3, n_c = 3$ and *i* is an eigenvalue.

$\mathbf{Q}2$. Given the ODE

$$\dot{x}_1 = x_1 x_2 - x_1^2,$$

 $\dot{x}_2 = -x_2 + x_1^2 + x_2^2,$

compute the one dimensional center manifold through the origin (0,0) and determine the stability (asymptotically stable, stable but not asymptotically stable, unstable) of the equilibrium at origin.

Q3. You are given the ODE in \mathbb{R}^n :

$$\dot{x}(t) = \frac{Ax(t)}{1+|x(t)|^2},$$

where A is a real $n \times n$ matrix and |.| denotes the 2-norm in \mathbb{R}^n .

(a) Show that solution exists for all $t \in \mathbb{R}$ for any given initial condition $x_0 \in \mathbb{R}^n$.

HINT: Compute the partials.

(b) Suppose eigenvalues of A all have negative real parts. Decide the stability (asymptotically stable, stable but not asymptotically stable, unstable) of the equilibrium at origin.

 ${\bf Q}4.$ Consider the 2D equation:

$$\dot{x} = -x^2 + \frac{1}{1+y^2},$$

$$\dot{y} = -y + x,$$

with initial condition $(x(0), y(0)) = (x_0, y_0)$ where $x_0 > 0$ and $y_0 > 0$.

- (a) Show that x(t) shall not become negative.
- (b) Let $[0,\beta)$ be the forward maximal interval of existence. First obbtain the bound $0 \le x(t) \le x_0 + t$ for all $t \in [0,\beta)$.
- (c) Use above to obtain the bound

$$0 \le y_0 e^{-t} \le y(t) \le y_0 e^{-t} + x_0(1 - e^{-t}) + (t + e^{-t} - 1) \le y_0 + x_0 + t,$$

for all $t \in [0, \beta)$.

(d) Show that $\beta = \infty$.