PhD COMPREHENSIVE EXAM IN ORDINARY DIFFERENTIAL EQUATIONS

August 2013

Do any 3 of the following 4 problems. Show all work. Each problem is worth ten points.

Q1. Consider a linear system $\dot{x}=A x$ where A is a 6×6 real matrix. Suppose

$$
J=\left[\begin{array}{cc}
J_{s} & 0 \\
0 & J_{c}
\end{array}\right]
$$

is the (complex) Jordan form of A where J_{s} is $n_{s} \times n_{s}$ and has all eigenvalues with negative real part and J_{c} is $n_{c} \times n_{c}$ and has all eigenvalues with zero real part. It is thus assumed A has no eigenvalues with strictly positive real parts. For each of the following scenarios describe the stability of origin (asymptotically stable, stable but not asymptotically stable, unstable).
(a) $n_{s}=6, n_{c}=0$.
(b) $n_{s}=5, n_{c}=1$.
(c) $n_{s}=4, n_{c}=2$ and A is non-singular.
(d) $n_{s}=4, n_{c}=2$ and the null space of A has dimension 1 .
(e) $n_{s}=3, n_{c}=3$ and i is an eigenvalue.

Q2. Given the ODE

$$
\begin{aligned}
& \dot{x}_{1}=x_{1} x_{2}-x_{1}^{2}, \\
& \dot{x}_{2}=-x_{2}+x_{1}^{2}+x_{2}^{2},
\end{aligned}
$$

compute the one dimensional center manifold through the origin $(0,0)$ and determine the stability (asymptotically stable, stable but not asymptotically stable, unstable) of the equilibrium at origin.

Q3. You are given the ODE in \mathbb{R}^{n} :

$$
\dot{x}(t)=\frac{A x(t)}{1+|x(t)|^{2}},
$$

where A is a real $n \times n$ matrix and $|$.$| denotes the 2$-norm in \mathbb{R}^{n}.
(a) Show that solution exists for all $t \in \mathbb{R}$ for any given initial condition $x_{0} \in \mathbb{R}^{n}$.
HINT: Compute the partials.
(b) Suppose eigenvalues of A all have negative real parts. Decide the stability (asymptotically stable, stable but not asymptotically stable, unstable) of the equilibrium at origin.

Q4. Consider the 2D equation:

$$
\begin{aligned}
& \dot{x}=-x^{2}+\frac{1}{1+y^{2}}, \\
& \dot{y}=-y+x,
\end{aligned}
$$

with initial condition $(x(0), y(0))=\left(x_{0}, y_{0}\right)$ where $x_{0}>0$ and $y_{0}>0$.
(a) Show that $x(t)$ shall not become negative.
(b) Let $[0, \beta)$ be the forward maximal interval of existence. First obbtain the bound $0 \leq x(t) \leq x_{0}+t$ for all $t \in[0, \beta)$.
(c) Use above to obtain the bound
$0 \leq y_{0} e^{-t} \leq y(t) \leq y_{0} e^{-t}+x_{0}\left(1-e^{-t}\right)+\left(t+e^{-t}-1\right) \leq y_{0}+x_{0}+t$, for all $t \in[0, \beta)$.
(d) Show that $\beta=\infty$.

