PhD COMPREHENSIVE EXAM IN PARTIAL DIFFERENTIAL EQUATIONS

August 2013

Do any 3 of the 4 problems. Show all work. Each problem is worth ten points.

Q1. Consider the wave equation problem

$$
\begin{array}{ll}
u_{t t}-u_{x x}=0 & |x|<\infty, t>0 \\
u(x, 0)=f(x), u_{t}(x, 0)=g(x) & |x|<\infty .
\end{array}
$$

Let (a, b) be a fixed open interval and $x_{1}>b>a$. Find the time interval during which solution $u(x, t)$ satisfies $u\left(x_{1}, t\right)>0$, if
(a) $g \equiv 0$ and $f(x)= \begin{cases}>0 & \text { if } a<x<b, \\ 0 & \text { otherwise } .\end{cases}$
(b) $f \equiv 0$ and $g(x)= \begin{cases}>0 & \text { if } a<x<b, \\ 0 & \text { otherwise } .\end{cases}$

Q2. (a) Let $\Omega \subset \mathbb{R}^{n}, u \in L^{1}(\Omega), \alpha$ being a multiindex. Define the α-th weak derivative of u. Then define the Sobolev space $W^{k, p}(\Omega)$.
(b) Prove that if u has a weak derivative in Ω, it is unique up to measure zero.
(c) Give an example of a function in $W^{1,2}(\Omega)$ that is not in $W^{2,2}(\Omega)$, where $\Omega=(0,1)$.

Q3. Consider the first-order problem $x u_{x}+y u_{y}-(x+y) u=0, u(1, y)=1$. The solution exists on the half plane $x>0$.
(a) What are the characteristic equations for this PDE?
(b) Find the solution $u(x, y)$.

Q4. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded, open connected domain with smooth boundary. Let L be defined by $L u=-\sum_{i, j=1}^{n}\left(a^{i j} u_{x_{i}}\right)_{x_{j}}+u$, where $a^{i j} \in L^{\infty}(\Omega)$.
(a) What does it mean for L to be uniformly elliptic in Ω ?
(b) Let u be a solution to the problem $L u=0$ in $\Omega, u=0$ on $\partial \Omega$. Prove $u \equiv 0$ in Ω.

