PhD COMPREHENSIVE EXAM IN PARTIAL DIFFERENTIAL EQUATIONS August 2013

Do any 3 of the 4 problems. Show all work. Each problem is worth ten points.

Q1. Consider the wave equation problem

$u_{tt} - u_{xx} = 0$	$ x < \infty, \ t > 0$
$u(x,0) = f(x), \ u_t(x,0) = g(x)$	$ x < \infty.$

Let (a, b) be a fixed open interval and $x_1 > b > a$. Find the time interval during which solution u(x, t) satisfies $u(x_1, t) > 0$, if

(a)
$$g \equiv 0$$
 and $f(x) = \begin{cases} > 0 & \text{if } a < x < b, \\ 0 & \text{otherwise.} \end{cases}$
(b) $f \equiv 0$ and $g(x) = \begin{cases} > 0 & \text{if } a < x < b, \\ 0 & \text{otherwise.} \end{cases}$

- **Q**2. (a) Let $\Omega \subset \mathbb{R}^n$, $u \in L^1(\Omega)$, α being a multiindex. Define the α -th weak derivative of u. Then define the Sobolev space $W^{k,p}(\Omega)$.
 - (b) Prove that if u has a weak derivative in Ω , it is unique up to measure zero.
 - (c) Give an example of a function in $W^{1,2}(\Omega)$ that is **not** in $W^{2,2}(\Omega)$, where $\Omega = (0, 1)$.
- **Q**3. Consider the first-order problem $xu_x + yu_y (x+y)u = 0$, u(1,y) = 1. The solution exists on the half plane x > 0.
 - (a) What are the characteristic equations for this PDE?
 - (b) Find the solution u(x, y).
- **Q**4. Let $\Omega \subset \mathbb{R}^n$ be a bounded, open connected domain with smooth boundary. Let *L* be defined by $Lu = -\sum_{i,j=1}^n (a^{ij}u_{x_i})_{x_j} + u$, where $a^{ij} \in L^{\infty}(\Omega)$.
 - (a) What does it mean for L to be uniformly elliptic in Ω ?
 - (b) Let u be a solution to the problem Lu = 0 in Ω , u = 0 on $\partial\Omega$. Prove $u \equiv 0$ in Ω .