PhD COMPREHENSIVE EXAM IN PARTIAL DIFFERENTIAL EQUATIONS

January 2014

Do any 3 of the 4 problems. Show all work. Each problem is worth ten points.

- **Q1.** Let $\{x_n\}_{n=1}^{\infty}$ be an orthonormal set in the Hilbert space X with the inner product and norm written as (\cdot, \cdot) and $\|\cdot\|$. The Fourier coefficients of $u \in X$ are defined as $(u, x_n), n = 1, 2, \ldots$
 - (a) Prove Bessel's inequality: $\sum_{n=1}^{\infty} (u, x_n)^2 \leq ||u||^2$. Hint: Consider $||u - \sum_{n=1}^{N} a_n x_n||^2$ where $a_n = (u, x_n)$.
 - (b) Consider the finite-dimensional subspace $Y = \text{span}\{x_1, \dots, x_N\}$ of X. Given $u \in X$, define $v \in Y$ through $v = \sum_{n=1}^{N} (u, x_n) x_n$. Show that $||u - v|| = \inf_{w \in Y} ||u - w||$, that is, v is the closest point in the subspace Y to the point u. Hint: Consider $||u - \sum_{n=1}^{N} c_n x_n||^2$ for arbitrary coefficients c_n .
- **Q**2. Integrate the characteristic equations to obtain the classical solution (that is, before any shocks develop) to $x^3u_x = u_y$ with $u(x,0) = \frac{1}{1+x^2}, x \in \mathbb{R}$. In what region in the y > 0 half-space is the solution defined?
- Q3. A spherical wave is a solution of the form u(r, t) of the 3D wave equation, where t is time and r is distance from the origin in \mathbb{R}^3 . The 3D wave equation takes the form

$$u_{tt} = c^2 \left(u_{rr} + \frac{2}{r} u_r \right) \tag{1}$$

in the case of spherical waves.

(a) Show that the general solution of (1) has the form

$$u(r,t) = \frac{1}{r} \left(F(r+ct) + G(r-ct) \right)$$

with arbitrary functions F and G.

- (b) Obtain the (d'Alembert type) solution corresponding to the initial data u(r, 0) = 0 and $u_r(r, 0) = g(r)$, where g is an even function of r.
- **Q**4. (a) What is the definition of the *weak derivative* $\frac{du}{dx}$ of a function $u \in C([0,1])$? Prove that the weak derivative is unique a.e. on (0,1).
 - (b) Let $\Omega = (0, 1)$. What is the definition of the Sobolev space $H^1(\Omega)$?
 - (c) For $u \in H^1(\Omega)$, Ω as above, show that

$$\max_{x \in [0,1]} |u(x)|^2 \le u^2(0) + ||u||_{H^1}.$$

Hint: Start with $2\int_0^x uu_x dx = \int_0^x (u^2)_x dx$.