Masters Comprehensive Exam in Matrix Analysis (Math 603) August 2015

Do any three problems. Show all your work. Each problem is worth 10 points.

1. Let A and B be two (different) $n \times n$ real matrices such that R(A) = R(B), where $R(\cdot)$ denotes the range of a matrix.

- (1) Show that R(A+B) is a subspace of R(A).
- (2) Is it always true that R(A+B) = R(A)? If so, prove it; otherwise, give a counterexample.

2. Solve the following problems.

- (1) Show that an $n \times n$ real matrix A has rank one if and only if there exist two nonzero column vectors $u, v \in \mathbb{R}^n$ such that $A = uv^T$.
- (2) Let A and B be two real $n \times n$ rank-one matrices. Show that either AB = 0 or AB has rank one.
- (3) Let A and B be two real $n \times n$ rank-one matrices with $R(A) \neq R(B)$. Suppose $n \geq 3$. Show that A + B is singular, and determine the largest possible rank of A + B.

3. Let $x = \begin{bmatrix} x_1 \\ \dots \\ x_n \end{bmatrix}$ and $y = \begin{bmatrix} y_1 \\ \dots \\ y_n \end{bmatrix}$ be two column *n*-dimensional vectors. Denote $\max_i y_i$ by \overline{y} , and $\min_i y_i$ by \underline{y} . If $\sum_{i=1}^n x_i = 0$, show that $\left| x^T y \right| \le \frac{1}{2} |x|_1 (\overline{y} - \underline{y})$, where $|x|_1 = \sum_{i=1}^n |x_i|$.

- 4. Prove the following two statements regarding the trace:
 - (a) Let A be a nonsingular matrix in $\mathbb{R}^{n \times n}$ and let $\lambda_1, \lambda_2, \dots, \lambda_n$ denote its n real eigenvalues. Show that

$$\sum_{i=1}^{n} |\lambda_i|^2 \le tr(AA^T).$$

- (b) Let A_1, A_2, \dots, A_m be *m* symmetric matrices in $\mathbb{R}^{n \times n}$. Suppose that $\sum_{j=1}^m A_j^2 = 0$, then $A_1 = A_2 = 0$ $\cdots = A_m = 0.$
- **5.** Prove the following two statements:
 - (a) If A and B are two positive semidefinite matrices in $\mathbb{R}^{n \times n}$, then $tr(AB) \ge 0$. If, in addition, tr(AB) =0, then AB = BA = 0.
 - (b) Let A_1, A_2, \dots, A_m be *m* linearly independent symmetric matrices in $\mathbb{R}^{n \times n}$. Let Y and Z be two positive definite matrices in $\mathbb{R}^{n \times n}$. Let M be the matrix in $\mathbb{R}^{m \times m}$ such that

$$M_{ij} = tr(A_i Z A_j Y), \qquad i, j = 1, \cdots, m.$$

Show that M is positive definite. (Hint: show $x^T M x > 0$ for each nonzero column vector x in \mathbb{R}^m .)