Masters Comprehensive Exam in Matrix Analysis (Math 603)
 August 2015

Do any three problems. Show all your work. Each problem is worth 10 points.

1. Let A and B be two (different) $n \times n$ real matrices such that $R(A)=R(B)$, where $R(\cdot)$ denotes the range of a matrix.
(1) Show that $R(A+B)$ is a subspace of $R(A)$.
(2) Is it always true that $R(A+B)=R(A)$? If so, prove it; otherwise, give a counterexample.
2. Solve the following problems.
(1) Show that an $n \times n$ real matrix A has rank one if and only if there exist two nonzero column vectors $u, v \in \mathbb{R}^{n}$ such that $A=u v^{T}$.
(2) Let A and B be two real $n \times n$ rank-one matrices. Show that either $A B=0$ or $A B$ has rank one.
(3) Let A and B be two real $n \times n$ rank-one matrices with $R(A) \neq R(B)$. Suppose $n \geq 3$. Show that $A+B$ is singular, and determine the largest possible rank of $A+B$.
3. Let $x=\left[\begin{array}{c}x_{1} \\ \ldots \\ x_{n}\end{array}\right]$ and $y=\left[\begin{array}{c}y_{1} \\ \ldots \\ y_{n}\end{array}\right]$ be two column n-dimensional vectors. Denote $\max _{i} y_{i}$ by \bar{y}, and $\min _{i} y_{i}$ by \underline{y}. If $\sum_{i=1}^{n} x_{i}=0$, show that $\left|x^{T} y\right| \leq \frac{1}{2}|x|_{1}(\bar{y}-\underline{y})$, where $|x|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$.
4. Prove the following two statements regarding the trace:
(a) Let A be a nonsingular matrix in $\mathbb{R}^{n \times n}$ and let $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ denote its n real eigenvalues. Show that

$$
\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2} \leq \operatorname{tr}\left(A A^{T}\right) .
$$

(b) Let $A_{1}, A_{2}, \cdots, A_{m}$ be m symmetric matrices in $\mathbb{R}^{n \times n}$. Suppose that $\sum_{j=1}^{m} A_{j}^{2}=0$, then $A_{1}=A_{2}=$ $\cdots=A_{m}=0$.
5. Prove the following two statements:
(a) If A and B are two positive semidefinite matrices in $\mathbb{R}^{n \times n}$, then $\operatorname{tr}(A B) \geq 0$. If, in addition, $\operatorname{tr}(A B)=$ 0 , then $A B=B A=0$.
(b) Let $A_{1}, A_{2}, \cdots, A_{m}$ be m linearly independent symmetric matrices in $\mathbb{R}^{n \times n}$. Let Y and Z be two positive definite matrices in $\mathbb{R}^{n \times n}$. Let M be the matrix in $\mathbb{R}^{m \times m}$ such that

$$
M_{i j}=\operatorname{tr}\left(A_{i} Z A_{j} Y\right), \quad i, j=1, \cdots, m
$$

Show that M is positive definite. (Hint: show $x^{T} M x>0$ for each nonzero column vector x in \mathbb{R}^{m}.)

