MASTER'S COMPREHENSIVE EXAM IN
 Math 600 -REAL ANALYSIS
 August 2014

Do any three (out of the five) problems. Show all work. Each problem is worth ten points.

Q1 (a) Provide the sequential criterion for compactness of a set in a metric space.
(b) Let A be a subset of a metric space (M, d). Prove that closure of A is compact if and only if for every sequence $\left(x_{n}\right)$ in A there exists a convergent subsequence (that converges in M).
HINT: Given a sequence in the closure of A construct an appropriate sequence in A.
Q2 (a) State the Arzela-Ascoli theorem in the context of functions $f:[0,1] \rightarrow \mathbb{R}$.
(b) Let $C([0,1])$ denote the space of continuous functions $f:[0,1] \rightarrow \mathbb{R}$ equipped with the supremum norm. Prove that the closure of an equicontinuous subset of $C([0,1])$ is equicontinuous.
(c) Define the map $I: C([0,1]) \rightarrow C([0,1])$ by

$$
I(f)(x)=\int_{0}^{x} f(t) d t, \quad \forall x \in[0,1],
$$

for all $f \in C([0,1])$. Suppose $K \subset C([0,1])$ is bounded. Prove that the closure of $I(K)$ is compact. Note that $I(K)$ is the image of K under I :

$$
I(K)=\{g \in C([0,1]) \mid g=I(f) \text { for some } f \in C([0,1])\}
$$

Q3 (a) State the Weierstrass approximation theorem on an interval $[a, b]$.
(b) For a continuous real valued function f on $[a, b]$ (in which case we write $f \in C[a, b]$), the moment sequence $\left(f_{0}, f_{1}, f_{2}, \ldots\right)$, is defined by $f_{n}:=\int_{a}^{b} f(x) x^{n} d x, n=0,1,2, \ldots$. If f and g in $C[a, b]$ have identical moment sequences, show that f and g are equal.
(c) Show that if $f \in C[a, b]$ with $f_{n}=0$ for all $n \geq 5$, then f is identically zero.

Q4 Consider the series $\sum_{n=1}^{\infty} f_{n}(x)$ on $[0, \infty)$ where

$$
f_{n}(x)=\frac{x e^{-n / x}}{x+n}, x>0, \quad f_{n}(0)=0 .
$$

(a) Show that the series converges uniformly on $[0, M]$ for every $M>0$.
(b) Discuss the continuity of the sum on $[0, \infty)$.
(c) Show that the series does not converge uniformly on $[0, \infty)$.

Q5 (a) Provide the definition of the derivative of a map $F: V_{1} \rightarrow V_{2}$ where $\left(V_{i},\|\cdot\|_{i}\right)$ are normed vector spaces (possibly infinite dimensional).
(b) Let $C([0,1])$ be the space of continuous real valued functions on $[0,1]$ endowed with the supremum norm. Define $F: C([0,1]) \rightarrow C([0,1])$ by

$$
F(f)(x)=\int_{0}^{x} e^{-2 t}(f(t))^{2} d t-\int_{0}^{x} e^{-t} f(t) d t
$$

for all $f \in C([0,1])$. Show directly from the definition that the derivative of F is differentiable on the entire domain.
(c) For the F defined above, show that $D F(f)=0$ if and only if f is given by $f(x)=e^{x} / 2$ for $x \in[0,1]$.

