Masters Comprehensive Exam in Matrix Analysis (Math 603)
 August 2014

Do any three problems. Show all your work. Each problem is worth 10 points.

1. R^{n} denotes the Euclidean n-space with the usual inner product. Suppose $u \neq 0, v$, and w are (column) vectors in R^{n}.
(a) Show that $u u^{T}$ is a real symmetric positive semidefinite matrix of rank one.
(b) If, for each x in R^{n},

$$
\langle u, x\rangle=0 \Rightarrow\langle v, x\rangle=0,
$$

show v is a scalar multiple of u.
(c) If $u u^{T}=v v^{T}+w w^{T}$, show that $\langle u, x\rangle^{2}=\langle v, x\rangle^{2}+\langle w, x\rangle^{2}$ and (hence) v and w are multiples of u.
2. Given column vectors u and v in R^{n}, consider the matrix $u v^{T}$ whose (i, j) th entry is $u_{i} v_{j}$. Let $e_{1}, e_{2}, \ldots, e_{n}$ denote the standard unit vectors in R^{n}.
(a) If $a_{1}, a_{2}, \ldots, a_{n}$ are nonzero column vectors in R^{n}, show that the matrices $\left\{a_{i} e_{i}^{T}: i=1,2, \ldots, n\right\}$ are linearly independent in $R^{n \times n}$ (the space of all real $n \times n$ matrices).
(b) Show that $R^{n \times n}=\operatorname{span}\left\{u v^{T}: u, v \in R^{n}\right\}$.
3.
(a) If A is a nonsingular matrix in $R^{n \times n}$ and if u and v are column vectors in R^{n}, then show that $\operatorname{det}\left(A+u v^{T}\right)=\operatorname{det}(A)\left(1+v^{T} A^{-1} u\right)$.
(b) Let $D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ be a diagonal real matrix such that $\lambda_{1}<\lambda_{2}<\cdots<\lambda_{n}$, and let v be a column vector in R^{n} with each entry being nonzero. Prove that if $\alpha \neq 0$ in R, then each λ_{i} is not an eigenvalue of $D+\alpha v v^{T}$.
4. Let A and B be $n \times n$ matrices such that $A=A^{2}, B=B^{2}$, and $A B=B A=0$.
(a) Prove that $\operatorname{rank}(A+B)=\operatorname{rank}(A)+\operatorname{rank}(B)$.
(b) Prove that $\operatorname{rank}(A)+\operatorname{rank}\left(I_{n}-A\right)=n$.
5. Let λ_{1} and λ_{2} be two distinct eigenvalues of a matrix A whose eigenspaces are E_{1} and E_{2} respectively. Let \mathcal{B}_{1} and \mathcal{B}_{2} be bases of E_{1} and E_{2} respectively.
(a) Show that $\mathcal{B}_{1} \cap \mathcal{B}_{2}=\emptyset$, and $\mathcal{B}_{1} \cup \mathcal{B}_{2}$ is a basis for $E_{1}+E_{2}$.
(b) Show that if A is a normal matrix, then $E_{1} \perp E_{2}$.

