Masters Comprehensive Exam in Matrix Analysis (Math 603) August 2014

Do any three problems. Show all your work. Each problem is worth 10 points.

1. \mathbb{R}^n denotes the Euclidean *n*-space with the usual inner product. Suppose $u \neq 0$, v, and w are (column) vectors in \mathbb{R}^n .

- (a) Show that uu^T is a real symmetric positive semidefinite matrix of rank one.
- (b) If, for each x in \mathbb{R}^n ,

$$\langle u,x\rangle=0\Rightarrow \langle v,x\rangle=0,$$

show v is a scalar multiple of u.

(c) If $uu^T = vv^T + ww^T$, show that $\langle u, x \rangle^2 = \langle v, x \rangle^2 + \langle w, x \rangle^2$ and (hence) v and w are multiples of u.

2. Given column vectors u and v in \mathbb{R}^n , consider the matrix uv^T whose (i, j)th entry is u_iv_j . Let e_1, e_2, \ldots, e_n denote the standard unit vectors in \mathbb{R}^n .

- (a) If a_1, a_2, \ldots, a_n are nonzero column vectors in \mathbb{R}^n , show that the matrices $\{a_i e_i^T : i = 1, 2, \ldots, n\}$ are linearly independent in $\mathbb{R}^{n \times n}$ (the space of all real $n \times n$ matrices).
- (b) Show that $R^{n \times n} = span\{uv^T : u, v \in R^n\}.$

3.

- (a) If A is a nonsingular matrix in $\mathbb{R}^{n \times n}$ and if u and v are column vectors in \mathbb{R}^n , then show that $\det(A + uv^T) = \det(A)(1 + v^T A^{-1}u).$
- (b) Let $D = diag(\lambda_1, \lambda_2, ..., \lambda_n)$ be a diagonal real matrix such that $\lambda_1 < \lambda_2 < \cdots < \lambda_n$, and let v be a column vector in \mathbb{R}^n with each entry being nonzero. Prove that if $\alpha \neq 0$ in \mathbb{R} , then each λ_i is not an eigenvalue of $D + \alpha v v^T$.
- **4.** Let A and B be $n \times n$ matrices such that $A = A^2$, $B = B^2$, and AB = BA = 0.
 - (a) Prove that rank(A + B) = rank(A) + rank(B).
 - (b) Prove that $rank(A) + rank(I_n A) = n$.

5. Let λ_1 and λ_2 be two distinct eigenvalues of a matrix A whose eigenspaces are E_1 and E_2 respectively. Let \mathcal{B}_1 and \mathcal{B}_2 be bases of E_1 and E_2 respectively.

- (a) Show that $\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$, and $\mathcal{B}_1 \cup \mathcal{B}_2$ is a basis for $E_1 + E_2$.
- (b) Show that if A is a normal matrix, then $E_1 \perp E_2$.