MASTER'S COMPREHENSIVE EXAM IN
 Math 600 -REAL ANALYSIS
 January 2014

Do any three (out of the five) problems. Show all work. Each problem is worth ten points.

Q1 (a) Provide the sequential criterion for compactness of a set in a metric space.
(b) Let $\left(M_{i}, d_{i}\right)$ be metric spaces for $i=1,2$. Let $M=M_{1} \times M_{2}$ and define the metric d on M by

$$
d(x, y)=d_{1}\left(x_{1}, y_{1}\right)+d_{2}\left(x_{2}, y_{2}\right),
$$

where $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$. Define the projection $\pi: M \rightarrow M_{1}$ by $\pi(x)=x_{1}$ where $x=\left(x_{1}, x_{2}\right)$.
Explain why direct images of compact sets under π are compact.
(c) With π as defined above, prove that inverse images of compact sets under π are also compact provided M_{2} is compact.

Q2 (a) State the definition of connectedness of a set in a metric space.
(b) Show that (in any metric space), the closure of a connected set is connected. Prove or disprove that the interior of a connected set is connected.
(c) In \mathbb{R}^{n}, let \mathbb{R}_{+}^{n} denote the nonnegative orthant (consisting of vectors with all components nonnegative). Show that \mathbb{R}_{+}^{n} and $\mathbb{R}_{+}^{n} \backslash\{0\}$ are connected. (Hint: Use convexity.)

Q3 (a) State a necessary and sufficient condition for a set to be compact in the metric space $C([0,1])$ consisting of all real valued continuous functions on $[0,1]$ endowed with the supremum norm metric.
(b) Prove or disprove that the closed unit ball $K=\{f:\|f\| \leq 1\}$ is compact in $C([0,1])$.
(c) Consider the mapping $T: C([0,1]) \rightarrow C([0,1])$ defined by

$$
(T f)(s)=\int_{0}^{1}(s+t) f(t) d t
$$

Show that $T(K)$ is equicontinuous and bounded (in the sup-norm metric).

Q4 Consider the series

$$
\sum_{n=1}^{\infty} \frac{1-e^{-n x}}{1+n^{2} x^{2}}
$$

on $[0, \infty)$.
(a) Show that the series converges uniformly on $[\delta, \infty)$ for every $\delta>0$.
(b) Show that the series converges pointwise on $[0, \infty)$.
(c) Show that the series does not converge uniformly on $[0, \infty)$.

Q5 (a) Provide the definition of the (Frechet) derivative of a map $F: V_{1} \rightarrow V_{2}$ where $\left(V_{i},\|\cdot\|_{i}\right)$ are normed vector spaces (possibly infinite dimensional).
(b) Let $C([0,1])$ be the space of continuous real valued functions on $[0,1]$ endowed with the supremum norm. Define $F: C([0,1]) \rightarrow \mathbb{R}$ by

$$
F(f)=\frac{1}{2} \int_{0}^{1}(f(x))^{2} d x-\frac{1}{2} \int_{0}^{1} f(\sqrt{x}) d x
$$

for all $f \in C([0,1])$.
Show directly from the definition that the derivative of F at $f \in C([0,1])$ is given by

$$
D F(f)(g)=\int_{0}^{1} f(x) g(x) d x-\frac{1}{2} \int_{0}^{1} g(\sqrt{x}) d x, \quad \forall g \in C([0,1]) .
$$

(c) For the F defined above, show that $D F(f)$ is zero if and only if f is given by $f(x)=x$.

