Masters Comprehensive Exam in Matrix Analysis (Math 603)

January 2015

Do any three problems. Show all your work. Each problem is worth 10 points.

1. a) Let $M=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ be a $n \times m$ matrix and suppose that A is a $r \times r$ submatrix of M with rank r. Show that $\operatorname{rank}(M)=r$ if and only if $D=C A^{-1} B$.
b) Let A and B be two $n \times n$ matrices. Prove that

$$
\max \{\operatorname{dim} \operatorname{Null}(A), \operatorname{dim} \operatorname{Null}(B)\} \leq \operatorname{dim} \operatorname{Null}(A B) \leq \operatorname{dim} \operatorname{Null}(A)+\operatorname{dim} \operatorname{Null}(B) .
$$

c) Let A be an $n \times n$ matrix. Suppose that at least $n^{2}-n+1$ entries of A are zeros, prove that $\operatorname{rank}(A)<n$. In this case, what is the maximum possible value for $\operatorname{rank}(A)$?
2. a) Let A be an $m \times m$ matrix. Given $\epsilon>0$, prove there exists an invertible $m \times m$ matrix \tilde{A} such that $\|A-\tilde{A}\|_{2}<\epsilon$.
b) If A, B, C and D are all $m \times m$ matrices and $A B=B A$, prove that

$$
\operatorname{det}\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\operatorname{det}(D A-C B)
$$

3. a) Let P be a projector (that is, $\left.P^{2}=P\right)$ other than identity and 0 . Prove that $\|P\|_{2}=\|(I-P)\|_{2}$.
b) Let P be a projector. Prove that $P=B C^{T}$ for some $n \times r$ matrices B, C such that $C^{T} B=I_{r}$.
4. If two real-valued $n \times n$ matrices A, B are symmetric positive semidefinite, prove that $\operatorname{trace}(A B) \geq 0$ and the eigenvalues of $A B$ are all real.
5. a) Let A be a real-valued $n \times n$ symmetric matrix and let $f(\mathbf{x})=\frac{\mathbf{x}^{T} A \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}$ for $\mathbf{x} \in R^{n} \backslash\{0\}$. Show that $\left.\frac{d}{d t}\right|_{t=0} f(\mathbf{x}+t \mathbf{y})=0$ for all $\mathbf{y} \in R^{n}$ implies that $\frac{\mathbf{x}^{T} A \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}$ is an eigenvalue of A. (Hint: Expand $f(\mathbf{x}+t \mathbf{y})$.)
b) Let A be a real-valued $n \times n$ symmetric matrix and let $C=A+\mathbf{z z}^{T}$ for some $\mathbf{z} \in R^{n}$. Let λ_{1} and λ_{n} be the largest and the smallest eigenvalues of A and ν_{1} and ν_{n} be the largest and the smallest eigenvalues of C. Prove that $\lambda_{1} \leq \nu_{1}$ and $\lambda_{n} \leq \nu_{n}$. (Hint: explore the connections between λ_{1} and λ_{n} and $f(\mathbf{x})$).
