MASTER'S COMPREHENSIVE EXAM IN
 Math 600 -REAL ANALYSIS
 January 2016

Do any three problems. Show all work. Each problem is worth ten points.
Q1 (a) Describe compactness of a set in a metric space in two different equivalent ways and in a third way in \mathbb{R}^{n}.
(b) Show that the union and intersection of two compact sets in a metric space are compact.
(c) Show that the algebraic sum of two compact sets in \mathbb{R}^{n} is compact. (Algebraic sum of sets A and B in \mathbb{R}^{n} is $A+B:=\{a+b: a \in A, b \in B\}$.)

Q2 You are given the Riemann zeta function defined by the series

$$
F(x)=\sum_{n=1}^{\infty} \frac{1}{n^{x}},
$$

for (real values of x) $x>1$.
(a) Prove that for each $a>1$, the series converges uniformly for $x \in[a, \infty)$.
(b) Discuss the continuity and differentiability of F for $x \in(1, \infty)$, providing rigorous justification.
(c) Prove that the series does not converge uniformly for $x \in(1, \infty)$.

Q3 Let $C([0,1])$ be the space of continuous functions $f:[0,1] \rightarrow \mathbb{R}$ endowed with the supremum norm.
(a) Provide the definition of equicontinuity of a subset $K \subset C([0,1])$.
(b) Prove that the closure of an equicontinuous set is equicontinuous.
(c) Prove that the sum of two equicontinuous subsets is equicontinuous. We note that the sum of two subsets A, B of $C([0,1])$ is defined by

$$
A+B=\{f+g \mid f \in A, g \in B\} .
$$

(d) Prove by an example that the product of two equicontinuous subsets is not necessarilly equicontinuous. Note that the product of two subsets A, B of $C([0,1])$ is defined by

$$
A B=\{f g \mid f \in A, g \in B\}
$$

Q4 Let n be a natural number with $n \geq 2$.
(a) Show that $\mathbb{R}^{n} \backslash\{0\}$ is path(=arcwise) connected.
(b) Let A be a path connected set in the matric space (M, d), and the function $f:(M, d) \rightarrow$ (N, ρ) be continuous on A. Show that $f(A)$ is path connected.
(c) Use (a)-(b) to show that the unit sphere $\mathbb{S}^{n-1}:=\left\{x \in \mathbb{R}^{n} \mid\|x\|_{2}=1\right\}$ is path connected.
(d) Let the function $g: \mathbb{S}^{n-1} \rightarrow \mathbb{R}$ be continuous on \mathbb{S}^{n-1}. Suppose $g(x)$ is irrational for any $x \in \mathbb{S}^{n-1}$. Show that g is a constant function on \mathbb{S}^{n-1}.

Q5 Define Fréchet differentiability of a function from \mathbb{R}^{n} to \mathbb{R}. Show that the following statements are equivalent:
(a) the functions $f(x)$ and $g(y)$ are differentiable on \mathbb{R};
(b) the function $F(x, y)=f(x)+g(y)$ is Fréchet differentiable on \mathbb{R}^{2};
(c) the function $G(x, y)=f(x+y)+g(x-y)$ is Fréchet differentiable on \mathbb{R}^{2}.

Note: You can use the fact that the composition of a differentiable function with a linear function is differentiable.

