MASTER'S COMPREHENSIVE EXAM IN
 Math 603 -MATRIX ANALYSIS
 January 2016

Do any three problems. Show all your work. Each problem is worth 10 points.
Q1 Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be such that (i) $f(x) \geq 0$ for all $x \in \mathbb{R}^{n}$; (ii) for any $\lambda \in \mathbb{R}, f(\lambda x)=|\lambda| f(x)$ for all $x \in \mathbb{R}^{n}$; and (iii) $f(x+y) \leq f(x)+f(y)$ for any $x, y \in \mathbb{R}^{n}$. (Such an f is called a seminorm on \mathbb{R}^{n}.) Let W be the zero set of f, i.e., $W:=\left\{x \in \mathbb{R}^{n} \mid f(x)=0\right\}$.
(a) Show that W is a subspace of \mathbb{R}^{n}.
(b) Show that f is a norm on \mathbb{R}^{n} if and only if $W=\{0\}$.
(c) Suppose W is a proper subspace of \mathbb{R}^{n}, and let W^{\perp} be the orthogonal complement of W. Show that for any $x \in \mathbb{R}^{n}$, there exists a unique $u_{x} \in W^{\perp}$ such that $f(x)=f\left(u_{x}\right)$. Furthermore, show that $\left\{u \in W^{\perp} \mid f(u)=0\right\}=\{0\}$.

Q2 Solve the following problems.
(a) Let P be a symmetric positive semidefinite matrix such that $P^{100}=P^{20}$. Show that $\operatorname{rank}(P)=\operatorname{trace}(P)$.
(b) Let P be an $n \times n$ symmetric real matrix, and $c \in \mathbb{R}^{n}$. Suppose that $\left\{x^{T} P x+c^{T} x \mid x \in\right.$ $\left.\mathbb{R}^{n}\right\}$ is bounded below. Show that P is positive semidefinite, and c is in the range of P.

Q3 Let A be an $n \times n$ real matrix, prove that
(a) A is skew-symmetric if and only if $A^{2}=-A A^{T}$.
(b) The matrix e^{A} is orthogonal if A is skew-symmetric.

Q4 Prove the following two statements:
(a) For matrices A, B and C such that $A B, B C$ and $A B C$ are all well-defined, prove that $\operatorname{rank}(A B)+\operatorname{rank}(B C) \leq \operatorname{rank}(B)+\operatorname{rank}(A B C)$.
(b) Let A be an $n \times n$ matrix. Suppose that there exists a natural number N such that

$$
\operatorname{rank}\left(A^{N}\right)=\operatorname{rank}\left(A^{N+1}\right),
$$

prove that

$$
\operatorname{rank}\left(A^{N}\right)=\operatorname{rank}\left(A^{N+1}\right)=\operatorname{rank}\left(A^{N+2}\right)=\operatorname{rank}\left(A^{N+3}\right)=\cdots .
$$

Q5 Consider the vector space $R^{n \times n}$ of all real $n \times n$ matrices.
(a) By describing a basis, find the dimension of $R^{n \times n}$.
(b) Given any $A \in R^{n \times n}$, show that $S(A):=\operatorname{span}\left\{I_{n}, A, A^{2}, A^{3}, \ldots\right\}$ is a subspace of $R^{n \times n}$. When $n>1$, can this subspace be equal to $R^{n \times n}$?
(c) If A is invertible, show that $S\left(A^{-1}\right)=S(A)$.

