Comprehensive Examination

OPTIMIZATION

August 1994

INSTRUCTIONS:

Do problem 1, either 2 or 3, and either 4 or 5, for a total of 3 questions.

1. (36 points) Consider the linear program

$$\begin{array}{ll} \max & x_1 + x_2 \\ \text{s.t.} & -x_1 + x_2 \leq 2 \\ & 2x_1 - x_2 \leq 6 \\ & x_1 + 3x_2 \leq 10 \\ & x_1 \geq x_2 \geq 0 \end{array}$$

- (a) Write the Lagrangian function of the above linear program. Using the Lagrangian function, determine (write explicitly) the dual linear program.
- (b) Convert the linear program displayed above into a minimization linear program in standard equality form. (This is the form in which the only linear inequalities are the non-negativity constraints on the variables.)
- (c) Solve the linear program in (b) using the simplex method.
- (d) Using the results of (c), determine the optimal solution to the dual linear program you found in (b).

2. (32 points) Consider the optimization problem

$$\max x_1^2 + x_2^2 - 4x_1 + 4$$

s.t. $x_1 - x_2 + 2 \ge 0$
 $-x_1^2 + x_2 - 1 \ge 0$
 $x_1 \ge 0, \quad x_2 \ge 0$

- (a) Solve the problem geometrically, by sketching it.
- (b) Show that the point (x_1^*, x_2^*) you found in (a) satisfies the KKT (Karush–Kuhn–Tucker) conditions.
- (c) Use the second order test to verify that (x^*, y^*) is a local maximum. (It is in fact the global maximum point.)

3. (**32** points) Consider the optimization problem

$$\max x_1^2 + x_2$$

s.t. $x_1^2 + x_2^2 - 9 \le 0$
 $x_1 + x_2 - 1 \le 0$

- (a) Sketch the feasible region and the level curves of the objective function.
- (b) Determine which of the following four points satisfy the KKT (Karush–Kuhn– Tucker) conditions:

$$(i) \quad (x_1^*, x_2^*) = (\frac{-\sqrt{35}}{2}, \frac{1}{2}), \quad (ii) \quad (x_1^*, x_2^*) = (\frac{1}{2}, \frac{1}{2}),$$
$$(iii) \quad (x_1^*, x_2^*) = (\frac{1+\sqrt{17}}{2}, \frac{1-\sqrt{17}}{2}), \quad (iv) \quad (x_1^*, x_2^*) = (\frac{1-\sqrt{17}}{2}, \frac{1+\sqrt{17}}{2}).$$

- (c) Use the second order test to determine which of the four points in (b) are local maximum points.
- 4. (32 points) Consider the optimization problem

$$\min \sum_{i=1}^{n} \frac{1}{x_i}$$

s.t.
$$\prod_{i=1}^{n} x_i = 1$$
$$x_i \ge 0, \quad i = 1, \dots, n.$$

- (a) Determine the point satisfying the KKT (Karush–Kuhn–Tucker) conditions.
- (b) Show that the KKT point found in (a) satisfies the second order necessary conditions. (Hint: it may help to verify the second order conditions for n=2, or n=3 first, in order to see the pattern of the proof in the general case.)
- (c) Use the results of (a) and (b) to prove the harmonic–geometric mean inequality

$$\frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}} \le (\prod_{i=1}^{n} x_i)^{1/n}.$$

5. (32 points) Recall that a function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if for $x, y \in \mathbb{R}^n$ and $0 \le \lambda \le 1$, we have

$$f((1-\lambda)x + \lambda y) \le (1-\lambda)f(x) + \lambda f(y).$$

(a) Prove that f is convex if and only if for any $x, y \in \mathbb{R}^n$,

$$f(y) \ge f(x) + \nabla f(x)^T (y - x).$$

(b) Let $f : \mathbb{R}^n \to \mathbb{R}$ be a convex function, and let $C \subseteq \mathbb{R}^n$ be a closed convex set. Show that a point $x^* \in C$ minimizes f on C if and only if the following *variational inequality* holds true:

$$\nabla f(x^*)^T(x-x^*) \ge 0$$
, for all $x \in C$.