
COMPREHENSIVE EXAMINATION
Math 650 – Optimization

January 1996
You must show all your work for full credit!

INSTRUCTIONS:

Do problems 1, 2, 5, and either 3 or 4, for a total of 4 problems.
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Q1. Consider the linear program

max 4x1 + 6x2 + 3x3 + x4

subject to 3/2x1 + 2x2 + 4x3 + 3x4 ≤ 550
4x1 + x2 + 2x3 + x4 ≤ 700
2x1 + 3x2 + x3 + 2x4 ≤ 200
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

(a) Solve the linear program above using the simplex method. (Bring into the basis the variable
which makes the largest improvement per unit). What is the solution?

(b) Using the results of (a), determine the optimal solution to the dual of the above linear
program.

(c) Now consider the linear program

min 2x1 + 3x2

subject to x1 ≥ 125
x1 + x2 ≥ 350
2x1 + x2 ≤ 600
x1 ≥ 0, x2 ≥ 0.

Do one step of the big–M method towards finding a feasible solution of the above linear
program. (Again, bring into the basis the variable which makes the largest improvement
per unit).

(d) Determine (write explicitly) the dual linear program by using the Lagrangian method.
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Q2. Consider the optimization problem

max x2 + (y + 1)2

subject to −x2 + y ≥ 0
−x− y + 2 ≥ 0

(a) Form the the Lagrangian and write the first order KKT conditions.

(a) Find the point(s) satisfying the first order KKT conditions.

(a) Sketch the feasible region, and graphically determine the optimal point(s).

(a) Is the second order KKT conditions satisfied at the optimal point(s)? Show all your steps
in arriving at your answer.
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Q3. Consider the optimization problem

max
1
3

n∑
i=1

x3
i

subject to
n∑

i=1

xi = 0

n∑
i=1

x2
i = n

(a) Write the Lagrangian for the problem as follows:

L(x, λ, µ) =
1
3

n∑
i=1

x3
i − λ

n∑
i=1

xi +
µ

2
(n−

n∑
i=1

x2
i ).

Find the KKT conditions.

(b) Show that λ = 1, and µ = (
∑n

i=1 x3
i )/n.

(c) Show that xi can take only two values, x− and x+, where x+ is positive and x− negative.
Find the possible values of x+ and x−.

(d) Find the optimal solution(s) to the problem, using (c).

(e) Investigate whether the second order KKT conditions are satisfied at the optimal solution(s)
you found in (d).
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Q4. Consider the well known Cauchy–Schwarz inequality

n∑
i=1

xiyi ≤

√√√√ n∑
i=1

x2
i ·

√√√√ n∑
i=1

y2
i . (1)

The purpose of this problem is to prove (1) using optimization techniques.

(a) Argue that (1) reduces to proving that the problem

min
√∑

i=1

x2
i ·

√∑
i=1

y2
i

subject to
n∑

i=1

xiyi = 1 (2)

has optimal value 1. Then argue that in problem (2), we can consider the vector y = y
fixed, so that it becomes equivalent the minimization problem

min
∑
i=1

x2
i

subject to
n∑

i=1

xiyi = 1. (3)

Show that, in order to prove (1), we need only prove (3) has optimal value

1∑n
i=1 y2

i

. (4)

(b) Now, solve (3) and justify all your steps. Show that the optimal value is the one given in
(4).

(c) Show that the solution in (b) is unique, and use this result to characterize the equality case
in (1).

(d) Show by direct calculation that the inequality (1) implies the triangular inequality√√√√ n∑
i=1

(xi + yi)2 ≤

√√√√ n∑
i=1

x2
i +

√√√√ n∑
i=1

y2
i .
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5. Let A, B, and C be compact (bounded, closed) convex sets in Rn. Suppose we have

A + C = B + C, (5)

where, say A + C, is defined as A + C = {x1 + x2 : x1 ∈ A, x2 ∈ C}. You are going to show that
(5) implies

A = B. (6)

by going through the following steps:

(a) The support function sA of A is defined as follows.

sA(a) = max{〈a, x〉 : x ∈ A} = sup{〈a, x〉 : x ∈ A}.

Prove that the epigraph of sA is a convex set.

(b) Show that (a) implies that sA is a convex function.

(c) Show that
sA+C = sA + sC . (7)

Hint: Show separately that we have sA+C ≤ sA + sC and sA + sC ≤ sA+C .

(d) Use (5) and (7) to show that sA = sB.

(e) Use a separation argument (and show and justify all your steps) to prove that

sA ≤ sB =⇒ A ⊆ B.

Consequently, conclude that (6) is true.
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