COMPREHENSIVE EXAMINATION

Math 650 - Optimization
August 1998
You must show all your work for full credit!

INSTRUCTIONS:

You must do problem 1 (35 points). Do either 2 or 3 (30 points), and either 4 or 5 (35 points), for a total of 3 problems and 100 points. You may do either 6 or 7 for extra credit (5 points).

Q1. Consider the optimization problem

$$
\begin{aligned}
\min & r \\
\text { subject to } & x_{1}^{2}+x_{2}^{2}-r \leq 0 \\
& \left(x_{1}-3\right)^{2}+x_{2}^{2}-r \leq 0 \\
& \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2}-r \leq 0
\end{aligned}
$$

(a) Show that the above problem is exactly the problem of finding the smallest circle that contains the points $(0,0),(3,0)$, and $(2,1)$ in the plane (or the triangle determined by these points). Obviously r is the square of the radius of the circle. What do the variables $\left(x_{1}, x_{2}\right)$ correspond to?
(b) Write the Lagrangian for the problem using the multiplier λ_{i} for the i th constraint, $i=$ $1,2,3$. Explane why λ_{0} can be assumed to be 1 in the Fritz John conditions. Then write down the KKT conditions, including the complementarity conditions. Use the KKT conditions to verify that λ_{i} 's add up to one, express x_{1}, x_{2} in terms of the multipliers λ_{i}. Finally, show that the optimal x_{i}^{*} 's are non-negative.
(c) Show that at least one multiplier must be zero by demonstrating that assumption that they are all non-zero leads to the contradiction that one of the variables $x_{i}^{*}<0$.
(d) Show that assumptions $\lambda_{2}=0$, and $\lambda_{1} \neq 0, \lambda_{3} \neq 0$ lead to contradiction.
(e) Similarly, one can show that the assumptions $\lambda_{1}=0, \lambda_{2} \neq 0, \lambda_{3} \neq 0$ lead to a contradiction (do not show this). Use all the information so far to find the optimal solution(s) $\left(x_{1}^{*}, x_{2}^{*}, r^{*}, \lambda_{1}^{*}, \lambda_{2}^{*}, \lambda_{3}^{*}\right)$ to the optimization problem.
(f) Give a theoretical reason as to why the optimal solution you found above is the global one(s).

Q2. Let $C \subseteq \mathbb{R}^{n}$ be a closed, convex set and $x \in \mathbb{R}^{n}$ a point such that $x \notin C$. Recall that the projection $\pi_{C}(x)$ is the (unique) point in C that is closest to x, i.e., $\left\|x-\pi_{C}(x)\right\| \leq\|x-z\|$ for all $z \in C$. Also recall that the distance from x to C is $d_{C}(x):=\left\|x-\pi_{C}(x)\right\|$.
(a) Write the variational inequality which gives a characterization of $\pi_{C}(x)$.
(b) Show that if $D \supseteq C$ is a closed convex set, then $d_{D}(x) \leq d_{C}(x)$. Conclude that if the halfspace

$$
H_{d, \alpha}^{-}:=\left\{z \in \mathbb{R}^{n}:\langle d, z\rangle \leq \alpha\right\}, \quad d \neq 0
$$

contains C, then $d_{H_{d, \alpha}^{-}}(x) \leq d_{C}(x)$.
(c) Show that the variational inequality in (a) implies
(i) $C \subseteq H_{d, \alpha}^{-}$,
(ii) $d_{C}(x)=d_{H_{d, \alpha}^{-}}(x)$,
where $d=x-\pi_{C}(x)$ and $\alpha=\left\langle d, \pi_{C}(x)\right\rangle$.
(d) Show that all these lead to the following, geometrically appealing "duality" result: the shortest distance from a point x to a convex set C not containing x is equal to the maximum among the distances from x to half spaces containing C.

Q3. Recall that the polar of a convex set $C \subseteq \mathbb{R}^{n}$ is the set

$$
C^{*}=\left\{y \in \mathbb{R}^{n}:\langle y, x\rangle \leq 1, \quad \forall x \in C\right\}
$$

(a) Show that if C is a convex body (a compact convex set) containing zero in its interior $\left(0 \in C^{0}\right)$, then so is C^{*}.
(b) Show that if C is convex body containing zero in its interior, then $C^{* *} \subseteq C$. (Since $C \subseteq C^{* *}$ (do not show this), this implies $C^{* *}=C$.) Hint: use a separation argument.
(c) Show that if $P:=\{x: A x \leq b\}$ is a polyhedron, then P^{*} is also one, and describe P^{*}. Hint: use affine Farkas Lemma.

Q4. In the quadratic program

$$
\min \left\{\frac{1}{2} x^{T} Q x+c^{T} x: A x \leq b\right\}
$$

Q is an $n \times n$ symmetric, positive definite matrix. Write the Lagrangian function and use it to determine the dual program. In particular, show that the dual program can be written in the form

$$
\max \left\{\frac{1}{2} y^{T} R y+d^{T} y: y \geq 0\right\}
$$

where R is an $n \times n$ symmetric matrix and $d \in \mathbb{R}^{n}$.

Q5. Solve, that is, find the optimal solution(s) to the constrained minimization problem

$$
\begin{aligned}
\min & \frac{x_{1}}{x_{2}}+\frac{x_{2}}{x_{3}}+\frac{x_{3}}{x_{1}} \\
\text { subject to } & x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0
\end{aligned}
$$

(a) By forming the Lagrangian and setting up the Karush-Kuhn-Tucker (KKT) conditions,
(b) By making the substitutions $x_{i}=e^{t_{i}}$ and then solving the unconstrained minimization problem in the variables t_{1}, t_{2}, t_{3},
(c) By applying the arithmetic-geometric mean (AGM) inequality to the objective function in either (a) or (b). State the AGM inequality first!
(d) The original problem is not a convex program. Yet, the optimal solution(s) you found is (are) global one(s). Why is this so, give a reason.

Q6. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuously differentiable function. It is well-known that f is a convex function if and only if

$$
\begin{equation*}
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle, \quad \forall x, y \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

Show that (1) is equivalent to

$$
\begin{equation*}
\langle\nabla f(y)-\nabla f(x), y-x\rangle \geq 0, \quad \forall x, y \in \mathbb{R}^{n} \tag{2}
\end{equation*}
$$

Hint: To prove (2) implies (1), use the mean value theorem to f, then apply (2).

Q7. Let $P:=\{x: A x \leq b\}$ be a polytope (bounded polyhedron) where A is an $m \times n$ matrix. Show that the rows $\left\{a_{1}, \ldots, a_{m}\right\}$ of A span \mathbb{R}^{n}. Hint: pick a basis $\left\{c_{1}, \ldots, c_{n}\right\}$ for \mathbb{R}^{n}. Formulate the duals of the linear programs $\left\{\max c_{i}^{T} x: A x \leq b\right\}$ and invoke the LP duality.

