COMPREHENSIVE EXAMINATION

Math 650 - Optimization
January 1999

INSTRUCTIONS:

You must do either Question 1 or Question 2 (25 points); Question 3 or 4 (10 pts .); Question 5 (25 pts.) ; Question 6 or 7 (25 pts.); and Question $8(15 \mathrm{pts}$.). The exam is worth 100 points.
You must show all your work for full credit!

Q1. Answer fully two of the following three parts.
(a) State and prove Jensen's inequality for a convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
(b) Let $C \subseteq \mathbb{R}^{n}$ be a closed convex set, and denote by $\pi_{C}(x)$ the projection of x onto C. (That is, $\pi_{C}(x)$ is the unique solution to the problem $\min \left\{\|z-x\|^{2}: z \in C\right\}$.) State the variational inequality for π_{C} and use it to prove that π_{C} is non-expansive, that is,

$$
\left\|\pi_{C}(x)-\pi_{C}(y)\right\| \leq\|x-y\|, \quad x, y \in \mathbb{R}^{n}
$$

(c) Let $P_{1}, P_{2} \subseteq \mathbb{R}^{n}$ be two polytopes (bounded polyhedra). Prove that the Minkowski sum $P_{1}+P_{2}$ is also a polytope. (Hint: use the fact that P_{i} is the convex hull of a finitely many points, $i=1,2$.)

Q2. Let $f: I=[a, b] \rightarrow \mathbb{R}$ be a convex function. If $x_{1}<x_{2}<x_{3}$ are points in I, then the following is a well known inequality:

$$
\begin{equation*}
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \leq \frac{f\left(x_{3}\right)-f\left(x_{1}\right)}{x_{3}-x_{1}} \leq \frac{f\left(x_{3}\right)-f\left(x_{2}\right)}{x_{3}-x_{2}} \tag{1}
\end{equation*}
$$

(Draw a picture.)
(a) Prove the first inequality above.
(b) Use (1) to prove that the one-sided derivatives $f_{+}^{\prime}(x), f_{-}^{\prime}(x)$ exist for a point $x \in(a, b)$, where

$$
f_{+}^{\prime}(x)=\lim _{t \downarrow 0} \frac{f(x+t)-f(x)}{t}, \quad f_{-}^{\prime}(x)=\lim _{t \downarrow 0} \frac{f(x)-f(x-t)}{t} .
$$

Q3. Let A be an $m \times n$ matrix. We proved in the course that the polyhedron $P:=\{x: A x \leq b\}$ has the useful representation

$$
P=\left\{\sum_{i=1}^{k} \lambda_{i} v_{i}+\sum_{j=1}^{l} \delta_{j} d_{j}: \sum_{i=1}^{k} \lambda_{i}=1, \lambda_{i} \geq 0, \delta_{j} \geq 0\right\}
$$

Suppose that the linear function $c^{T} x$ is bounded from below on P. Use the representation of P above to prove that the linear program $\min \left\{c^{T} x: x \in P\right\}$ has an optimal solution which occurs at some vertex v_{i} of P.

Q4. Solve the problem

$$
\max \left\{\prod_{i=1}^{n} x_{i}: \sum_{i=1}^{n} x_{i}=1, x_{i} \geq 0, i=1, \ldots, n\right\}
$$

Q5. Consider the optimization problem

$$
\begin{aligned}
\min & x \\
\text { subject to } & (x+1)^{2}+y^{2} \geq 1 \\
& x^{2}+y^{2} \leq 2
\end{aligned}
$$

(a) Which of the points $A=(0,0), B=(-1,-1)$, and $C=(0, \sqrt{2})$ satisfy the first order necessary conditions (i.e. KKT conditions) for optimality?
(b) Which of the points A, B, C in (a) satisfy the second order necessary/sufficient conditions for optimality?

Q6. Consider the optimization problem

$$
\begin{align*}
\min & (x-a)^{2}+(y-b)^{2}+x y \\
\text { subject to } & 0 \leq x \leq 1 \tag{P}\\
& 0 \leq y \leq 1
\end{align*}
$$

where $a, b \in \mathbb{R}$ are parameters of the problem.
(a) Show that the problem (P) is a convex programming problem for all values of the parameters $a, b \in \mathbb{R}$.
(b) Write down the Karush-Kuhn-Tucker (KKT) conditions for (P), using the Lagrange multipliers λ_{i} for the i th constraint, $i=1,2,3,4$.
(c) For what values of the parameters a, b is the point $\left(x^{*}, y^{*}\right)=(1,1)$ optimal solution to (P)?
(d) Repeat (c) for the point $\left(x^{*}, y^{*}\right)=(0,1)$.

Q7. Consider the convex optimization problem

$$
\begin{aligned}
\min & x^{2}+y^{2} \\
\text { subject to } & x^{2}-y \leq 10 \\
& -x+y \leq-4 .
\end{aligned}
$$

(a) Sketch the feasible region.
(b) Show, either by appealing to a theoretical result (state carefully the result!) or by performing a calculation, that every point which satisfies the Fritz John conditions also satisfies the KKT conditions.
(c) Argue that there exists a unique optimal point which is also the unique KKT point. Compute this point using the KKT conditions.

Q8. Determine (calculate explicitly) the dual program to the program in Question 6 or in Question 7. State the strong duality theorem and explain whether it holds true for the problem at hand.

Q9. (Extra Credit, 5 pts.) Formulate the following min-max problem as a linear program:

$$
\min _{x \in \mathbb{R}^{n}} \max _{1 \leq i \leq m} a_{i}^{T} x .
$$

