COMPREHENSIVE EXAMINATION Math 650 / Optimization / January 2006 (Prepared by Dr. O. Güler)

Name __

INSTRUCTIONS:

You *must* solve *one* problem from the set $\{1, 2\}$ (50 points), and *one* problem from the set $\{3, 4\}$ (50 points), but please *mark* clearly which *two* problems you would like to be graded. Otherwise, problems 1 and 4 will be graded.

1.(a) Consider the quadratic function $f(x) := \frac{1}{2}x^T A x + c^T x + \alpha$ on \mathbb{R}^n , where A is **any** symmetric $n \times n$ matrix, $c \in \mathbb{R}^n$, and $\alpha \in \mathbb{R}$.

- (a) Give the definitions for a local minimizer of f and a global minimizer of f.
- (b) Write the first and second order necessary conditions for a local minimizer $x^* \in \mathbb{R}^n$ of f.
- (c) Show that if x^* is a local minimizer of f, then x^* is actually global minimizer of f on \mathbb{R}^n .
- (d) Now consider the optimization problem

$$\min\{f(x): a^T x = \beta\} \quad (P),$$

that is, the minimization of f on an hyperplane $\{x : a^T x = \beta\}$, where $a \in \mathbb{R}^n$ is a non–zero vector.

Write the first and second order necessary conditions for a local minimizer x^* of (P).

- (e) Show that if x^* satisfies the first and second order necessary in part (d), then x^* is actually global minimizer of (P).
- **2.** Consider the problem (P)

$$\begin{array}{ll} \min & xy\\ \text{s.t.} & x^2 + y^2 \leq 2,\\ & x + y \geq 0. \end{array}$$

(a) Write down the FJ (Fritz John) conditions for (P), which are necessary for a local minimizer (x^*, y^*) of (P). Show that $\lambda_0 \neq 0$, that is, KKT (Karush–Kuhn–Tucker) conditions are satisfied at all points satisfying the FJ conditions.

- (b) Write the resulting KKT conditions for a local minimizer of (P).
- (c) Consider the following four points: $\{(1, -1), (-1, 1), (1, 1), (0, 0)\}$. Determine, with full justification, which of these points satisfy the KKT conditions.
- (d) Use second order necessary/sufficient conditions to determine which KKT point(s) is a local minimizer. Is there any local minimizer which is not global minimizer?
- **3.** Consider the convex programming problem (P), $\min\{-\ln x \ln y : x^2 + y \le 1\}$.
- (a) Formulate the Lagrange dual (D) of (P) in a single variable λ in such a way that no primal variables x, y appear in (D).
- (b) State the Strong Duality Theorem as it applies to the pair (P) and (D). Prove that either this duality theorem holds true, or argue that it does not hold true.
- (c) Solve the dual problem (D), that is, compute its optimal solution λ^* .
- (d) Use the numerical value of λ^* to compute the optimal solution(s) to the primal problem (P).
- **4.** Let $f: D \to \mathbb{R}$ be a *convex* function on a convex set $D \subseteq \mathbb{R}^n$.
- (a) Show that any local minimizer $x^* \in D$ of f on D is in fact a global minimizer of f on D. You may not assume f is differentiable!
- (b) Assume that f is differentiable. Prove that x^* is a global minimizer of f on D if and only if $\nabla f(x^*)^T(x-x^*) \ge 0$ for all $x \in D$.
- (c) Assume that f is differentiable and D is open. Prove that x^* is a global minimizer of f on D if and only if $\nabla f(x^*) = 0$.
- (d) Assume that f is twice continuously differentiable and D is open. Prove that the Hessian $\nabla^2 f(x)$ is a symmetric, positive semi-definite matrix at all points $x \in D$.