COMPREHENSIVE EXAMINATION Math 650 / Optimization / August 2009

Name .

INSTRUCTIONS: (i) Choose **one** problem from the set $\{1, 2\}$ (40 points), and **two** problems from the set $\{3, 4, 5\}$ (60 points). Please *mark* clearly which problems you would like to be graded!

1. Consider the optimization problem

min
$$xyz$$

subject to $x + y + z = 0$,
 $x^2 + y^2 + z^2 = 1$.

Find the solution of this nonlinear program by completing the following, incremental, steps. (a) Give a theoretical reason as to why every local minimizer must satisfy the KKT conditions.

(b) Form the Lagrangian function

$$L(x, y, z, \lambda, \mu) = xyz + \lambda(x + y + z) + \mu(x^{2} + y^{2} + z^{2} - 1),$$

where λ and μ are the multipliers; write the KKT conditions.

(c) Use the KKT conditions to show that $3xyz = -2\mu$, and argue that we must have $\mu > 0$. *Hint:* We are minimizing xyz!

(d) Use the KKT conditions to show that

$$x(\lambda + 2\mu x) = y(\lambda + 2\mu y) = z(\lambda + 2\mu z) = -xyz = \frac{2\mu}{3},$$

and argue that x, y, z must be the roots of the equation

$$u^2 + \gamma u - \frac{1}{3} = 0, (1)$$

where $\gamma = \frac{\lambda}{2\mu}$.

(e) Using (c) and the KKT conditions, argue that if (x^*, y^*, z^*) is an optimal solution with $x^* \leq y^* \leq z^*$, then $x^* < 0 < y^* \leq z^*$. Then use (d) to show that $y^* = z^*$. (f) Using (1) argue that $y^* = z^* = -(x^* + y^*) = \gamma$, and that $x^*y^* = -1/3$ so that $x^* = \frac{-1}{3\gamma}$.

(f) Using (1) argue that $y^* = z^* = -(x^* + y^*) = \gamma$, and that $x^*y^* = -1/3$ so that $x^* = \frac{-1}{3\gamma}$. (g) Use $x^* + y^* + z^* = 0$ to show that $y^* = z^* = \gamma = \frac{1}{\sqrt{6}}$, and $x^* = \frac{-2}{\sqrt{6}}$.

2. Consider the optimization problem

$$\begin{array}{ll} \max & x^2 + y^2 \\ s.t. & x^2 - y^2 \ge 1 \\ & x \le 3 \end{array}$$

(a) Sketch the feasible region.

- (b) Write the Fritz John conditions for the critical point(s) of the problem.
- (c) Show that every Fritz John point must satisfy the KKT conditions.
- (d) Determine which of the following three points satisfy the KKT conditions: A. (-1,0), B. (3,0), C. $(3,-2\sqrt{2})$.
- (e) Determine whether C. is a local maximizer; use second order conditions for this purpose.

3. Answer fully *two* of the following three, **unrelated** questions, clearly indicating your choices.

(a) State Jensen's inequality for a convex function $f : \mathbb{R}^n \to \mathbb{R}$. Assuming its truth, state and prove the characterization of equality in Jensen's inequality when f is a strictly convex function.

(b) Let $C \subseteq \mathbb{R}^n$ be a closed convex set, and denote by $\Pi_C(x)$ the projection of x onto C. (That is, $\Pi_C(x)$ is the unique solution to the problem $\min\{||z - x||^2 : z \in C\}$.) State the *variational inequality* which characterizes Π_C , and use it to prove that π_C is non-expansive, that is,

$$||\pi_C(x) - \pi_C(y)|| \le ||x - y||, \qquad x, y \in \mathbb{R}^n.$$

(c) Let $P_1, P_2 \subseteq \mathbb{R}^n$ be two convex polyhedra. Prove that the Minkowski sum $P_1 + P_2$ is also a convex polyhedron.

4. Consider the set $K := \{x : Ax < 0\}$ where A is an $m \times n$ matrix.

(a) Show, by elementary arguments (that is, using no convexity), that $K = \emptyset$ if and only if

$$\{y \in \mathbb{R}^m : y_i < 0, i = 1, \dots, m\} \cap \{Ax : x \in \mathbb{R}^n\} = \emptyset.$$
(1)

(b) Assuming (1) is true, show by a separation argument, that there exists $a \in \mathbb{R}^m$ satisfying

$$a \ge 0, \quad a \ne 0, \quad A^T a = 0. \tag{2}$$

(c) Combine (a) and (b) to prove that $\{x : Ax < 0\} = \emptyset$ if and only if the zero vector is in the convex hull of the rows of A.

5. Answer the following, **unrelated**, questions.

(a) Consider the "diamond" D in the plane with vertices at the points (1,0), (0,1), (-1,0) and (0,-1). Describe D by four linear inequalities; use this to determine the *polar* D of, D^* where

$$D^* = \{ y \in \mathbb{R}^2 : \langle x, y \rangle \le 1, \ \forall x \in D \}.$$

Hint: use Farkas Lemma.

(b) Formulate the following min-max problem as a linear program:

$$\min_{x \in \mathbb{R}^n} \max_{1 \le i \le m} a_i^T x + b_i.$$