Name:

Instructions: You must show all your work to receive full credit. Partial answers will only receive partial credit. Please choose 3 of the 4 problems to solve. Please indicate which 3 problems you would like graded.

- 1. (a) State at least two versions of the definition of the Singular Value Decomposition (SVD) of an n × m matrix A. [Hint: Think of full vs. reduced SVD.] Be precise in introducing all notation. For definiteness in sketching some of the notational connections, you may assume that n > m, i.e., that the matrix A has more rows than columns (like it has in an overdetermined least squares problem). Explain how the different versions of the SVD are connected; properly introduced notation might make this clear.
 - (b) Is the SVD for a given matrix unique? In what sense? For certain non-uniqueness, you may want to give examples of small matrices, such as 2×2 matrices.
- 2. Consider a real square matrix $A \in \mathbb{R}^{n \times n}$.
 - (a) State the definition for the matrix A to be positive definite.
 - (b) Give at least three ways (in addition to the definition) to check if a given real square matrix is positive definite. One or more ways should be computational in nature, that is: if you had a matrix given in the computer, which algorithm might you run on it to determine computationally if it is positive definite?
 - (c) Show that the matrix $A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$ is positive definite.
- 3. (a) Let A be an $n \times n$ nonsingular matrix and $x, \delta x, b, \delta b \in \mathbb{R}^n$ with $x \neq 0$ be so that

$$Ax = b$$
, $A(x + \delta x) = b + \delta b$. (1)

Prove that

$$\frac{\|\delta x\|_{\infty}}{\|x\|_{\infty}} \le \operatorname{cond}_{\infty}(A) \frac{\|\delta b\|_{\infty}}{\|b\|_{\infty}}. \tag{2}$$

(b) Define the $n \times n$ matrix $A = I + \alpha e_1 e_n^T$ (n > 1), where $e_i = [0, \dots, 1, \dots, 0]$ is the $n \times 1$ matrix representing the i^{th} vector of the standard basis in \mathbb{R}^n and $\alpha \in \mathbb{R}$ is a parameter. Compute A^{-1} , $\sigma(A)$ (the spectrum of A), $\text{cond}_{\infty}(A)$, and comment on the relationship between the spectrum of a matrix and its condition number. (Hint: A is unit upper triangular.)

(c) Let $b = e_1$ and $\delta b = \varepsilon e_n$, and consider the system (1) with A as defined at (b). Compute the quantities

$$\|\delta x\|_{\infty} / \|x\|_{\infty}, \|\delta b\|_{\infty} / \|b\|_{\infty},$$

and verify that they satisfy (2). (Note: do not just state that (2) is satisfied because you showed that it holds, verify that it holds specifically for this example.)

4. Given are two nonsingular $n \times n$ matrices A, M and the system

$$Ax = b (3)$$

with $b \in \mathbb{R}^n$ and solution $x^* = A^{-1}b$.

(a) Consider the simple iteration for finding x^* :

$$x_{n+1} = x_n + M^{-1}(b - Ax_n), \quad n = 0, 1, \dots$$
 (4)

If $e_n = x^* - x_n$ is the error at step n, show that

$$\overset{\text{X}^{s} - \text{Y}_{\text{virt}}}{e_{n+1}} = (I - M^{-1}A)e_{n}^{\text{Y}^{s}}.$$

- (b) State (do not prove) a condition on A and M that is necessary and sufficient for x_n to converge to x^* regardless of the choice of b or x_0 .
- (c) With

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$
, and $M = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$

prove that the iteration (4) converges for any $x_0, b \in \mathbb{R}^2$. Identify (by name) this iteration, and for $b = [1, 2]^T$, and $x_0 = [0, 0]^T$ find x_1, x_2, x_3 .