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Abstract 
 
This study explores the feasibility of energy harvesting from the deformation of a piezoelectric material attached on the human mandi-

ble to power an implantable medical device such as deep brain stimulator. A finite element (FE) model of the human mandible was de-
veloped and verified experimentally. A piezoelectric energy harvesting device was designed and fixed onto a synthetic mandible to com-
pare its experimental power output to the simulation results. A novel mandibular loading apparatus was designed to imitate the forces 
exerted on a mandible during mastication in a lab environment. The peak-to-peak voltages from finite element analysis (FEA) and ex-
periment were 1.7 and 1.0 V. Despite the discrepancy in magnitude, similar voltage waveforms were obtained. A method to maximize 
the electrical efficiency of the proposed harvesting device was discussed.  
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1. Introduction 

Deep brain stimulation (DBS) is a surgical procedure that 
aims to provide therapeutic effects for patients that suffer from 
various neurological disorders [1]. The implantation procedure 
of a DBS device is not without morbidity due to the large size 
of the generator and wiring. Moreover, its limited battery life 
(on average 3 years [2]) requires additional surgical proce-
dures for battery replacement. There is significant motivation 
to reduce the number of battery replacements to improve pa-
tient quality of life. One potential solution is a self-charging 
DBS device utilizing energy from the human mandible. Re-
cently, researchers have investigated sources of energy inside 
the human body to power implantable devices, such as the 
human heartbeat [3, 4], muscle contractions [5-7] and blood 
flow [8, 9]. An energy harvester for self-powered DBS has 
been studied [10], but it did not provide a human application. 
An energy harvesting rectenna capable of self-powering a 
DBS system was also designed, but it requires a constant ex-
ternal microwave source [11]. Researchers have also looked 
towards harvesting energy from cerebrospinal fluid pressure 
fluctuations, but it is unable to generate practical power for a 
DBS system (0.62 nW) [12]. An external head-mounted de-
vice that harvests energy from jaw movements via a piezo-

electric harvester strapped to a human chin was also devel-
oped that could possibly power small-scale electronics [13], 
but is not practical for an in-vivo application. The objective of 
this paper was to investigate the feasibility of harvesting en-
ergy from a similarly flexible piezoelectric energy harvester 
surgically implanted to the human mandible to power a DBS 
system. The deformation of the human mandible and the elec-
trical energy generation was investigated, and the piezoelectric 
harvester mounted on the human mandible was analyzed via 
finite element analysis and experimentally tested. 

 
2. Finite element analysis of mandible 

As the first step of this study, the finite element (FE) model 
for human mandible was verified via finite element analysis. 
The finite element mesh of the human mandible used in this 
paper was obtained from a CT scan of a human cadaver [14]. 
A mandible’s material properties are known to be anisotropic 
and changing over time [15-17] and different locally [14]. 
However, it is acceptable to assign linearly isotropic [18] or 
transversely isotropic [19] properties for the cortical and tra-
becular bone. In this study, isotropic behavior was assumed 
for the trabecular bone (red in Fig. 1), cortical bone (purple), 
and dentin (cyan). A half-model of the mandible was imple-
mented to reduce computation time. *Corresponding author. Tel.: +1 410 455 3314, Fax.: +1 410 455 1052 
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2.1 Static analysis of the human mandible 

First, we used an artificial mandible from 3B Scientific [20] 
since human mandible samples could not be acquired. A dis-
placement in lateral direction (y-direction) by the load in the 
same direction was compared between experimental loading 
and FE analysis (Fig. 2). In Fig. 2, an Instron testing machine 
applied loading on the lateral surface of the condyle to initiate 
bending of the mandible fixed at the center (Fig. 2(a)). The 
force displacement data was measured and shown in Fig. 2(b), 
where a stiffness of 5.75 N/mm is found.  

Identical loading conditions were simulated in the FE model 
with the following Young’s moduli provided by the manufac-
turer [20]: 1.5 GPa, 100 MPa, and 1.5 GPa for cortical bone, 
trabecular bone, and dentin, respectively. The static analysis 
yielded a maximum downward displacement of 0.881 mm, 
about 12 % different from the experimental condition. Con-
sidering measurement error and the possible delicate differ-
ence of material properties from the manufacturer [20], this 
displacement is acceptable. 

We further conducted a static analysis using realistic man-
dible properties to observe maximum displacement and stress 
to verify these results to the values found in literature. In this 
paper, the mechanical properties (Young’s modulus) of the 
human mandible were chosen as 100 MPa and 16 GPa for the 
trabecular and cortical bone, respectively (Table 1). These fall 
within a range of values found in literature: 13.7~17.5 GPa for 
the cortical bone [18, 21], and 62~114 MPa for the trabecular 
bone [21-24]. 

In this paper, sliding boundary conditions were applied to 

the condyle to represent the temporomandibular joint (TMJ) 
for computational efficiency, and on the sagittal plane to rep-
resent symmetry. Additionally, a displacement boundary con-
dition restricting motion along the z-axis was applied on the 
first and second molar to simulate teeth contact during masti-
cation. Fig. 3(a) shows the boundary conditions imposed on 
the FE model. 

To replicate a masticatory cycle, the maximum forces for 
the masseter, temporalis, medial pterygoid, and lateral ptery-
goid from Table 2 were applied on the mandible at their re-
spective areas of insertion. In Table 2, each of the maximum 
force during isometric contraction was defined as Fm, and its 
directional components were indicated as Fmx, Fmy, and Fmz. 
These forces were applied on the corresponding parts of man-
dible as shown in Figs. 3(b) and (c). The muscles are assumed 
to exhibit bilateral behavior. 

The analysis result shows that the maximum lateral dis-
placement is 0.37 mm outwards for the half mandible (Fig. 
4(a)), or a total lateral displacement of 0.74 mm. This value is 
within the 0.46 to 1.06 mm range described in the literature 
[19, 26]. In Fig. 4(b), the von Mises stress ranges from 5 to 
94.6 MPa for static loading. A concentration of stress ob-
served on the contour plot, indicated by the red circle, was 
neglected since it is a result of the loading of the mandibular 
muscles and the sharp contour of the geometry. The von 
Mises stress range for the rest of the mandible fell in a range 
found in literature (2 to 53.4 MPa [16]). 
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Fig. 1. Frontal (left) and lateral (right) view of the FE model generated 
from the geometry of a human cadaver- trabecular bone (red); cortical 
bone (purple); dentin (cyan). 
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Fig. 2. (a) Experimental setup for artificial mandible using Instron 
testing machine; (b) force-displacement graph by lateral (y-directional) 
incremental force. 

 

Table 1. Material properties of the finite element model for the mandible. 
 

Material Young’s modulus Poisson’s ratio 

Cortical 16 GPa 0.3 

Trabecular 100 MPa 0.3 

Dentin 17.6 GPa [25]  0.25 

 
Table 2. Magnitude and direction of the primary mastication muscles [15]. 
 

Muscle Portion Fm (N) Fmx (N) Fmy (N) Fmz (N) 

Anterior 158.00 6.95 -23.54 -156.10 

Middle 95.00 -47.50 -21.00 -79.52 

Posterior 75.00 -64.15 -15.60 -35.55 
Temporalis 

Sum 296.84 -104.67 -60.14 -271.17 

Masseter 190.40 79.78 -39.41 -168.50 

Medial pterygoid 174.80 65.03 84.95 -138.27 

Lateral pterygoid 66.90 50.64 42.15 11.64 
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Input Force Definition for the Mandible

Muscle portion Direction  cosine Fm (N) Fmx (N) Fmy (N) Fmz (N)cos-x cos-y cos-z

Temporalis

Anterior 0.044 -0.149 -0.988 158.00 6.952 -23.542 -156.104

Middle -0.5 -0.221 -0.837 95.00 -47.500 -20.995 -79.515

Posterior -0.855 -0.208 -0.474 75.00 -64.125 -15.600 -35.550

Masseter 0.419 -0.207 -0.885 190.40 79.778 -39.413 -168.504

Medial Pterygoid 0.372 0.486 -0.791 174.80 65.026 84.953 -138.267

Lateral Pterygoid 0.757 0.63 0.174 66.90 50.643 42.147 11.641

Table 3: Magnitude and direction of the primary mastication muscles [37]
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Fig. 3. FE model with (a) boundary conditions; (b) and (c) various 
mandibular muscles responsible for closing. 
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2.2 Dynamic analysis of the human mandible 

Following the static analysis, a dynamic analysis was run to 
predict dynamic mandibular deformation and explore energy 
harvesting capabilities. Based on electromyography (EMG) 
records from muscles of mastication acting on the mandible 
[15, 27], the force profile was approximated as a half cycle of 
a sine wave with a non-zero slope during inactive period of 
muscle force to prevent unrealistic jumps of veloc-
ity/acceleration, with peaks obtained from the maximum 
forces for each muscle in Table 2 and a frequency of 1.57 Hz 
to represent chewing [28] (Fig. 5). Boundary conditions were 
applied on the mandible in the same manner as done in the 
static analysis. The transient analysis in this section considered 
only the masseter and temporalis muscles, the two main mus-
cles acting on the mandible responsible for closing move-
ments. 

Similar to the static analysis, the maximum displacement 
and stress were observed on the side of the mandible. The 
lateral displacement had a peak of 0.54 mm outwards direc-
tion, shown in Fig. 6(a) (circled area for maximum displace-
ment). From this analysis, the areas that experienced more 
deformation were taken into consideration for possible place-
ment locations of the harvester. Ignoring the high stress con-
centration due to sharp geometry, the von Mises stress ranged 
from 9-36 MPa (Fig. 6(b)).  

 
3. Design of the piezoelectric energy harvester 

The harvester design and location was carefully determined 

based on the information from the FE analysis as well as 
mandibular anatomy and patient comfort. There are numerous 
factors that affect the power output of a harvester, such as the 
type and shape of the piezoelectric material, position of the 
harvester on the energy source, and configuration of the pie-
zoelectric material on the harvester. In Fig. 7(b) we delineated 
possible placement of the harvesting device on the posterior 
body of the mandible, indicated by the green box, which is 
free of anatomical constraints (Fig. 7(a)). In this paper, the 
harvester location along the surface of the posterior body 
highlighted with a rectangular shape as shown in Fig. 7(c) was 
investigated.  

To ensure biocompatibility and the desired structural flexi-
bility for an in vivo energy harvesting application, macro fiber 
composite (MFC, Smart Material Corporation) [29] incorpo-
rated with a titanium substrate was selected as the piezoelec-
tric material. MFC with the dimensions, 37 ´ 10 ´ 0.3 mm3 
(active area 28 ´ 8 mm2), was selected to fit the area in Fig. 
7(c). The compliance coefficients (S), the piezoelectric strain 
coefficients (d: d31 and d33), and relative permittivity (e) are 
defined in Table 3.  

 
3.1 Selection of harvester design 

For this study we selected a unimorph (single MFC layer) 

 
 
Fig. 4. FE model with (a) boundary conditions; (b) and (c) various 
mandibular muscles responsible for closing. 
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Fig. 5. Directional force profiles for masseter (left) and temporalis 
(right) muscles. 

 

Table 3. MFC piezoelectric properties. 
 
S11 = S22 (´10-9m2/N) S33 S44 S55 = S66 S12 S13 = S23 

0.065 0.034 0.165 0.173 -0.205 -0.0106 

d33
0 (´10-10m/V) d31

0 - ε11 ε22 ε33 

-1.53 4.34 - 712 1.7 737 

 

 
 
Fig. 6. FE analysis of the mandible, transient loading by two muscles: 
(a) Maximum lateral displacement at time at t = 0.33 s (m); (b) von 
Mises stress contour at time of peak magnitude of the mandible (Pa). 

 

 
          (a)                   (b)               (c) 
 
Fig. 7. (a) Nerves and blood vessels surrounding the mandible; (b) 
diagram showing feasible areas to place the harvester (marked by 
green box); (c) position of harvester on mandible (dashed yellow line). 
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along with a substrate to minimize patient discomfort. A tran-
sient analysis of the mandible with the harvester was per-
formed to compare the power level between two different har-
vester locations as shown in Fig. 8. Three titanium screws (red 
rectangle locations in Fig. 8 (left) were used to fix the substrate 
to the mandible (two at each end, and one at the center). 

The FE analysis yielded larger electrical output (open cir-
cuit voltage) for the first location - the second location was not 
particularly conducive to capture strain energy due to smaller 
bending stress. For the first location, a study was performed to 
determine the optimal resistance for maximum power output 
(9.72´106 Ohms). In Fig. 9(a), the maximum average power 
was found to be 1.28 µW. Fig. 9(b) shows the time history of 
power with the optimal resistance value with peak power of 
1.7 µW.  

 
4. Experimental power evaluation 

4.1 Design of mandibular loading apparatus 

We chose two representative mandibular muscle forces 
(temporalis and masseter, see Sec. 2.2) whose dynamic behav-
iors were realized by a unique lever apparatus. For this appa-
ratus, the driving force from a controlled linear actuator was 
transmitted to the mandible via a coupled lever, rope and pul-
ley system (Fig. 10).  

The levers receive the force from the actuator and amplifies 
it corresponding the mechanical advantage needed to properly 
represent the masseter and temporalis muscular forces as fol-
lows: 

 
0

0

= i

i

F d
F d

.   (1)
 

Fo and Fi represent the output and input forces, di and do 
represent the distances from the fulcrum to the input and out-
put force, respectively (see Table 4 for a detailed description 
of lever design parameters). Because the material properties of 
the artificial mandible used in this paper are lower than a real-
istic mandible, the magnitude of the muscular forces was 
scaled down by a factor of 7 to maintain consistency with the 
deformation level in Fig. 6(a). The calculation of the magni-
tudes of the masseter and temporalis muscles is graphically 
shown in Fig. 11. The actuator force was controlled by using a 
function generator that provides a continuous sinusoidal func-
tion at 1.57 Hz. The ropes coupled to the levers achieve the 
desired force profile (Fig. 5) since they only transmit force 
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Fig. 8. Locations for MFC placement along titanium substrate. 
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Fig. 9. (a) Maximum power output as a function of resistance; (b) plot 
of power (W) vs time (s) for harvester configuration. 

 

Table 4. Lever design parameters and descriptions. 
 

Parameter Description 

FT Force on temporalis 

FM Force on masseter 

Fi Force of the actuator 

do
i Distance from fulcrum to force on temporalis 

do
M Distance from fulcrum to force on masseter 

di Distance from the fulcrum to the force of the actuator 
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Fig. 10. (a) Components in test apparatus; (b) whole view of the testing 
apparatus. 
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Fig. 11. Lever design for the temporalis (left) and masseter (right) 
muscles. 
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while in tension. 
To imitate the boundary conditions imposed on the FE 

model (Fig. 3), two blocks with an indentation to match the 
shape of the condyles were 3D printed and fixed to the frame 
of the apparatus (Fig. 12). A rod was placed across the molars 
to fix vertical displacement of the mandible. The ends of ropes 
were fastened onto the mandible with screws to mimic man-
dibular loading. During the load testing, the dynamic force 
profile was monitored by a digital scale inserted between the 
ropes attached to the lever (Fig. 10) and lateral displacement 
of the mandible is measured via laser vibrometer.  

The harvesting device was attached to the mandible using 
screws (Fig. 12) that are commonly used in mandibular surgi-
cal procedures [30, 31]. While the dynamic loading was ap-
plied, the open-circuit voltage of one MFC was measured 
using an oscilloscope, and a peak-to-peak voltage of about 1.0 
V was measured (Fig. 13). The peak-to-peak voltage predicted 
from the FEA was 1.7 V.  

Recent advancements in self-powering DBS systems have 
yielded lower power requirements, typically ranging between 
7.4~132 μW [32-35]. The parametric study on the resistor in 
Fig. 9(a) shows that our proposed prototype can offer an aver-
age power, Pave = 1/T´òP(t)dt = 1/T´ò{V2(t)/R}dt, up to 1.27 
μW, where T is the time interval for integration. While the 
power output is lower than required, it can be further ampli-
fied by multilayered MFC design or developing an optimal 
circuit. 

4.2 Discussion 

The results of the experiment offer significant insight into 
the energy harvesting capabilities under low excitation fre-
quencies. The double-peak voltage response (with negative 
and positive peaks) can be explained using the equivalent 
circuit of PZT in Fig. 14. The double-peak phenomenon is 
caused by a nonzero phase shift f = tan-1(-1/wt) = tan-1 

(-1/wRC) @ -34 degrees contributed by a small excitation 
frequency w = 1.57´2p (rad/s), when R = 9.72´106 (Ohm) 
and C = 15 ´109 (F). This means the phase of the current is 
faster than that of source voltage (Vcc) by 34 degrees as ob-
served in the negative maximum value at t @ 2.1 s (Fig. 13). At 
t @ 2.24 s, the current reached zero before Vcc, but the increas-
ing Vcc caused the current to also increase, resulting in a posi-
tive peak current at t @ 2.33 s. Because the voltage phase at the 
resistive load is equal to the current phase in the series equiva-
lent circuit (Fig. 14), the double-peak voltage response ap-
peared at the resistive load. At the beginning of the capacitor 
dominant region (after t @ 2.33 s in Fig. 13), there is no input 
force. Therefore, most of the energy stored in the piezoelectric 
capacitor (C) is transferred to the resistive load up to the end 
of cycle (2.55 s). 

The discrepancy between simulation and experiment is 
primarily due to the loosening of rope and the corresponding 
tension reduction that can decrease the measured peak-to-
peak voltage, even though we could obtain very similar volt-
age waveforms (Fig. 13). Furthermore, the voltage output is 
sensitive to small changes in positioning of the mandible 
under the applied boundary conditions. Future efforts can be 
made regarding methods to minimize the amount of force 
transmission loss (e.g. using metal wire rope) and robust 
fixing conditions for the mandible. A possible implementa-
tion of using the power in this study is by integrating with a 
power management integrated circuit (PMIC) that efficiently 
accumulates a micro power (µW) and periodically charges a 
storage device for DBS system [36]. An additional power 
line would be required from the storage device to the DBS 
system. 

 
5. Conclusions 

This study investigated the feasibility of a piezoelectric en-
ergy harvester implanted on the human mandible to provide 
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power to a DBS device, by comparing simulation (finite ele-
ment method) and experiment conducted via a uniquely de-
signed testing apparatus that mimics the mastication forces. 
We analyzed the output voltage waveform, found identical 
between FEA and experiment, and discussed a method to use 
the power for DBS. While power generation of the device is 
low to power a commercial DBS, further investigation is un-
derway to improve the experiments and increase power output 
of the device.  
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Nomenclature------------------------------------------------------------------------ 

C     : Capacitance 
dii

0     : Piezoelectric strain coefficients 
d     : Distance 
e     : Relative permittivity 
F     : Force    
S  : Compliance coefficient 
f  : Phase shift 
w : Frequency 
Vcc : Source voltage 
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