Abstract
Thermodynamic systems typically conserve quantities (known as charges) such as energy and particle number. The charges are often assumed implicitly to commute with each other. Yet quantum phenomena such as uncertainty relations rely on the failure of observables to commute. How do noncommuting charges affect thermodynamic phenomena? This question, upon arising at the intersection of quantum information theory and thermodynamics, spread recently across many-body physics. Noncommutation of charges has been found to invalidate derivations of the form of the thermal state, decrease entropy production, conflict with the eigenstate thermalization hypothesis and more. This Perspective surveys key results in, opportunities for and work adjacent to the quantum thermodynamics of noncommuting charges. Open problems include a conceptual puzzle: evidence suggests that noncommuting charges may hinder thermalization in some ways while enhancing thermalization in others.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Yunger Halpern, N. Beyond heat baths II: framework for generalized thermodynamic resource theories. J. Phys. A 51, 094001 (2018).
Yunger Halpern, N., Faist, P., Oppenheim, J. & Winter, A. Microcanonical and resource-theoretic derivations of the thermal state of a quantum system with noncommuting charges. Nat. Commun. 7, 12051 (2016).
Manzano, G., Parrondo, J. M. & Landi, G. T. Non-Abelian quantum transport and thermosqueezing effects. PRX Quantum 3, 010304 (2022).
Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935).
Coles, P. J., Berta, M., Tomamichel, M. & Wehner, S. Entropic uncertainty relations and their applications. Rev. Mod. Phys. 89, 015002 (2017).
Benítez Rodríguez, E. & Arévalo Aguilar, L. A survey of the concept of disturbance in quantum mechanics. Entropy 21, 142 (2019).
Yunger Halpern, N., Beverland, M. E. & Kalev, A. Noncommuting conserved charges in quantum many-body thermalization. Phys. Rev. E 101, 042117 (2020).
Majidy, S., Lasek, A., Huse, D. A. & Yunger Halpern, N. Non-Abelian symmetry can increase entanglement entropy. Phys. Rev. B 107, 045102 (2023).
Kranzl, F. et al. Experimental observation of thermalization with noncommuting charges. PRX Quantum 4, 020318 (2023).
Kaufman, A. M. et al. Quantum thermalization through entanglement in an isolated many-body system. Science 353, 794–800 (2016).
Neill, C. et al. Ergodic dynamics and thermalization in an isolated quantum system. Nat. Phys. 12, 1037 (2016).
Clos, G., Porras, D., Warring, U. & Schaetz, T. Time-resolved observation of thermalization in an isolated quantum system. Phys. Rev. Lett. 117, 170401 (2016).
Zhou, Z.-Y. et al. Thermalization dynamics of a gauge theory on a quantum simulator. Science 377, 311–314 (2022).
Vaccaro, J. A. & Barnett, S. M. Information erasure without an energy cost. Proc. R. Soc. A 467, 1770–1778 (2011).
Croucher, T., Bedkihal, S. & Vaccaro, J. A. Discrete fluctuations in memory erasure without energy cost. Phys. Rev. Lett. 118, 060602 (2017).
Wright, J. S., Gould, T., Carvalho, A. R., Bedkihal, S. & Vaccaro, J. A. Quantum heat engine operating between thermal and spin reservoirs. Phys. Rev. A 97, 052104 (2018).
Croucher, T. & Vaccaro, J. A. Memory erasure with finite-sized spin reservoir. Preprint at https://doi.org/10.48550/arXiv.2111.10930 (2021).
Bouchard, V. MA PH 464 — group theory in physics: lecture notes. Univ. Alberta https://sites.ualberta.ca/~vbouchar/MAPH464/front.html (2020).
Gour, G. & Spekkens, R. W. The resource theory of quantum reference frames: manipulations and monotones. New J. Phys. 10, 033023 (2008).
Deutsch, J. M. Quantum statistical mechanics in a closed system. Phys. Rev. A 43, 2046–2049 (1991).
Srednicki, M. Chaos and quantum thermalization. Phys. Rev. E 50, 888–901 (1994).
de Oliveira, T. R., Charalambous, C., Jonathan, D., Lewenstein, M. & Riera, A. Equilibration time scales in closed many-body quantum systems. New J. Phys. 20, 033032 (2018).
Chakraborty, S., Luh, K. & Roland, J. How fast do quantum walks mix? Phys. Rev. Lett. 124, 050501 (2020).
Murthy, C., Babakhani, A., Iniguez, F., Srednicki, M. & Yunger Halpern, N. Non-Abelian eigenstate thermalization hypothesis. Phys. Rev. Lett. 130, 140402 (2023).
Rigol, M., Dunjko, V. & Olshanii, M. Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854–858 (2008).
Abanin, D. A., Altman, E., Bloch, I. & Serbyn, M. Colloquium: many-body localization, thermalization, and entanglement. Rev. Mod. Phys. 91, 021001 (2019).
Regnault, N., Moudgalya, S. & Bernevig, B. A. Quantum many-body scars and Hilbert space fragmentation: a review of exact results. Rep. Prog. Phys. 85, 086501 (2022).
Yunger Halpern, N. & Majidy, S. How to build Hamiltonians that transport noncommuting charges in quantum thermodynamics. npj Quantum Inf. 8, 10 (2022).
Jaynes, E. T. Information theory and statistical mechanics. II. Phys. Rev. 108, 171 (1957).
Guryanova, Y., Popescu, S., Short, A. J., Silva, R. & Skrzypczyk, P. Thermodynamics of quantum systems with multiple conserved quantities. Nat. Commun. 7, 12049 (2016).
Liu, Y.-K. Gibbs states and the consistency of local density matrices. Preprint at https://doi.org/10.48550/arXiv.quant-ph/0603012 (2006).
Rigol, M., Dunjko, V., Yurovsky, V. & Olshanii, M. Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons. Phys. Rev. Lett. 98, 050405 (2007).
Rigol, M. Breakdown of thermalization in finite one-dimensional systems. Phys. Rev. Lett. 103, 100403 (2009).
Langen, T. et al. Experimental observation of a generalized Gibbs ensemble. Science 348, 207–211 (2015).
Vidmar, L. & Rigol, M. Generalized Gibbs ensemble in integrable lattice models. J. Stat. Mech. 2016, 064007 (2016).
Balian, R., Alhassid, Y. & Reinhardt, H. Dissipation in many-body systems: a geometric approach based on information theory. Phys. Rep. 131, 1–146 (1986).
Elze, H.-T. & Greiner, W. Quantum statistics with internal symmetry. Phys. Rev. A 33, 1879 (1986).
Alhassid, Y. & Levine, R. Connection between the maximal entropy and the scattering theoretic analyses of collision processes. Phys. Rev. A 18, 89 (1978).
Balian, R. & Balazs, N. Equiprobability, inference, and entropy in quantum theory. Ann. Phys. 179, 97–144 (1987).
Callen, H. B. Thermodynamics and an Introduction to Thermostatistics 2nd edn (Wiley, 1985).
Landau, L. D. & Lifshitz, E. M. Statistical Physics: Part 1 3rd edn Vol. 5 (Butterworth-Heinemann, 1980).
Lostaglio, M. Thermodynamics at the Quantum Scale Generalized Landauer Principle. Thesis, Imperial College London (2014).
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010).
Chitambar, E. & Gour, G. Quantum resource theories. Rev. Mod. Phys. 91, 025001 (2019).
Lostaglio, M. An introductory review of the resource theory approach to thermodynamics. Rep. Prog. Phys. 82, 114001 (2019).
Yunger Halpern, N. & Renes, J. M. Beyond heat baths: generalized resource theories for small-scale thermodynamics. Phys. Rev. E 93, 022126 (2016).
Brandão, F., Horodecki, M., Ng, N., Oppenheim, J. & Wehner, S. The second laws of quantum thermodynamics. Proc. Natl Acad. Sci. USA 112, 3275–3279 (2015).
Lostaglio, M., Jennings, D. & Rudolph, T. Thermodynamic resource theories, non-commutativity and maximum entropy principles. New J. Phys. 19, 043008 (2017).
Hinds Mingo, E., Guryanova, Y., Faist, P. & Jennings, D. in Thermodynamics in the Quantum Regime (eds Binder, F. et al.) 751–771 (Springer, 2018).
Marvian, I. & Mann, R. Building all time evolutions with rotationally invariant Hamiltonians. Phys. Rev. A 78, 022304 (2008).
Mitsuhashi, Y., Kaneko, K. & Sagawa, T. Characterizing symmetry-protected thermal equilibrium by work extraction. Phys. Rev. X 12, 021013 (2022).
Pusz, W. & Woronowicz, S. L. Passive states and KMS states for general quantum systems. Comm. Math. Phys. 58, 273–290 (1978).
Lenard, A. Thermodynamical proof of the Gibbs formula for elementary quantum systems. J. Stat. Phys. 19, 575 (1978).
Gour, G., Jennings, D., Buscemi, F., Duan, R. & Marvian, I. Quantum majorization and a complete set of entropic conditions for quantum thermodynamics. Nat. Commun. 9, 5352 (2018).
Sparaciari, C., Del Rio, L., Scandolo, C. M., Faist, P. & Oppenheim, J. The first law of general quantum resource theories. Quantum 4, 259 (2020).
Popescu, S., Sainz, A. B., Short, A. J. & Winter, A. Reference frames which separately store noncommuting conserved quantities. Phys. Rev. Lett. 125, 090601 (2020).
Khanian, Z. B., Bera, M. N., Riera, A., Lewenstein, M. & Winter, A. Resource theory of heat and work with non-commuting charges. Ann. Henri Poincaré 24, 1725–1777 (2023)
Khanian, Z. B. From quantum source compression to quantum thermodynamics. Preprint at https://doi.org/10.48550/arXiv.2012.14143 (2020).
Bera, M. L. & Bera, M. N. Quantum thermodynamics allows quantum measurement almost without collapse. Preprint at https://doi.org/10.48550/arXiv.1910.13224 (2019).
Shankar, R. Principles of Quantum Mechanics 2nd edn (Springer, 1994).
Foini, L. & Kurchan, J. Eigenstate thermalization hypothesis and out of time order correlators. Phys. Rev. E 99, 042139 (2019).
Pappalardi, S., Foini, L. & Kurchan, J. Eigenstate thermalization hypothesis and free probability. Phys. Rev. Lett. 129, 170603 (2022).
Wang, J. et al. Eigenstate thermalization hypothesis and its deviations from random-matrix theory beyond the thermalization time. Phys. Rev. Lett. 128, 180601 (2022).
Noh, J. D. Eigenstate thermalization hypothesis in two-dimensional XXZ model with or without SU(2) symmetry. Phys. Rev. E 107, 014130 (2023).
Strasberg, P., Winter, A., Gemmer, J. & Wang, J. Classicality, Markovianity, and local detailed balance from pure-state dynamics. Phys. Rev. A 108, 012225 (2023).
Zhang, Z., Tindall, J., Mur-Petit, J., Jaksch, D. & Buča, B. Stationary state degeneracy of open quantum systems with non-Abelian symmetries. J. Phys. A 53, 215304 (2020).
D’Alessio, L., Kafri, Y., Polkovnikov, A. & Rigol, M. From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239–362 (2016).
Wigner, E. P. Characteristic vectors of bordered matrices with infinite dimensions. Ann. Math. 62, 548–564 (1955).
Dyson, F. J. Statistical theory of the energy levels of complex systems. II. J. Math. Phys. 3, 157–165 (1962).
Rosenzweig, N. & Porter, C. E. “Repulsion of energy levels” in complex atomic spectra. Phys. Rev. 120, 1698–1714 (1960).
Giraud, O., Macé, N., Vernier, É. & Alet, F. Probing symmetries of quantum many-body systems through gap ratio statistics. Phys. Rev. X 12, 011006 (2022).
DiVincenzo, D. P. Two-bit gates are universal for quantum computation. Phys. Rev. A 51, 1015–1022 (1995).
Lloyd, S. Almost any quantum logic gate is universal. Phys. Rev. Lett. 75, 346–349 (1995).
Deutsch, D. E., Barenco, A. & Ekert, A. Universality in quantum computation. Proc. R. Soc. Lond. A 449, 669–677 (1997).
Marvian, I. Restrictions on realizable unitary operations imposed by symmetry and locality. Nat. Phys. 18, 283–289 (2022).
Marvian, I., Liu, H. & Hulse, A. Qudit circuits with SU(d) symmetry: locality imposes additional conservation laws. Preprint at https://doi.org/10.48550/arXiv.2105.12877 (2021).
Marvian, I., Liu, H. & Hulse, A. Rotationally-invariant circuits: universality with the exchange interaction and two ancilla qubits. Preprint at https://doi.org/10.48550/arXiv.2202.01963 (2022).
Marvian, I. (Non-)Universality in symmetric quantum circuits: why Abelian symmetries are special. Preprint at https://doi.org/10.48550/arXiv.2302.12466 (2023).
Manzano, G. Squeezed thermal reservoir as a generalized equilibrium reservoir. Phys. Rev. E 98, 042123 (2018).
Shahidani, S. Thermodynamic forces and flows between a thermal bath and a squeezed thermal bath: application to optomechanical systems. Phys. Rev. A 105, 063516 (2022).
Upadhyaya, T., Braasch, J., William, F., Landi, G. T. & Yunger Halpern, N. What happens to entropy production when conserved quantities fail to commute with each other. Preprint at https://doi.org/10.48550/arXiv.2305.15480 (2023).
Ito, K. & Hayashi, M. Optimal performance of generalized heat engines with finite-size baths of arbitrary multiple conserved quantities beyond independent-and-identical-distribution scaling. Phys. Rev. E 97, 012129 (2018).
Page, D. N. Average entropy of a subsystem. Phys. Rev. Lett. 71, 1291–1294 (1993).
Calabrese, P., Dubail, J. & Murciano, S. Symmetry-resolved entanglement entropy in Wess-Zumino-Witten models. J. High Energy Phys. 2021, 67 (2021).
Goldstein, M. & Sela, E. Symmetry-resolved entanglement in many-body systems. Phys. Rev. Lett. 120, 200602 (2018).
Zhao, S., Northe, C. & Meyer, R. Symmetry-resolved entanglement in AdS3/CFT2 coupled to U(1) Chern–Simons theory. J. High Energy Phys. 2021, 30 (2021).
Zhao, S., Northe, C., Weisenberger, K. & Meyer, R. Charged moments in W3 higher spin holography. J. High Energy Phys. 2022, 166 (2022).
Bianchi, E. & Dona, P. Typical entanglement entropy in the presence of a center: page curve and its variance. Phys. Rev. D 100, 105010 (2019).
Agarwal, L. & Xu, S. Emergent symmetry in Brownian SYK models and charge dependent scrambling. J. High Energy Phys. 2022, 45 (2022).
Corps, Á. L. & Relaño, A. Dynamical and excited-state quantum phase transitions in collective systems. Phys. Rev. B 106, 024311 (2022).
Corps, Á. L. & Relaño, A. Theory of dynamical phase transitions in collective quantum systems. Phys. Rev. Lett. 130, 100402 (2023).
Corps, Á. L. & Relaño, A. General theory for discrete symmetry-breaking equilibrium states. Preprint at https://doi.org/10.48550/arXiv.2303.18020 (2023).
Fagotti, M. On conservation laws, relaxation and pre-relaxation after a quantum quench. J. Stat. Mech.: Theory Exp. 2014, P03016 (2014).
Fagotti, M. Charges and currents in quantum spin chains: late-time dynamics and spontaneous currents. J. Phys. A Math. Theor. 50, 034005 (2016).
Fukai, K., Nozawa, Y., Kawahara, K. & Ikeda, T. N. Noncommutative generalized Gibbs ensemble in isolated integrable quantum systems. Phys. Rev. Res. 2, 033403 (2020).
Žnidarič, M. Spin transport in a one-dimensional anisotropic Heisenberg model. Phys. Rev. Lett. 106, 220601 (2011).
Ljubotina, M., Žnidarič, M. & Prosen, T. Spin diffusion from an inhomogeneous quench in an integrable system. Nat. Commun. 8, 16117 (2017).
Gopalakrishnan, S. & Vasseur, R. Kinetic theory of spin diffusion and superdiffusion in XXZ spin chains. Phys. Rev. Lett. 122, 127202 (2019).
De Nardis, J., Gopalakrishnan, S., Vasseur, R. & Ware, B. Stability of superdiffusion in nearly integrable spin chains. Phys. Rev. Lett. 127, 057201 (2021).
Ilievski, E., De Nardis, J., Gopalakrishnan, S., Vasseur, R. & Ware, B. Superuniversality of superdiffusion. Phys. Rev. X 11, 031023 (2021).
Mierzejewski, M., Pawłowski, J., Prelovšek, P. & Herbrych, J. Multiple relaxation times in perturbed XXZ chain. SciPost Phys. 13, 013 (2022).
Potter, A. C. & Vasseur, R. Symmetry constraints on many-body localization. Phys. Rev. B 94, 224206 (2016).
Peskin, M. E. & Schroeder, D. V. An Introduction to Quantum Field Theory (Westview, 1995).
Mueller, N., Zache, T. V. & Ott, R. Thermalization of gauge theories from their entanglement spectrum. Phys. Rev. Lett. 129, 011601 (2022).
Liu, H. & Glorioso, P. Lectures on non-equilibrium effective field theories and fluctuating hydrodynamics (Sissa Medialab, 2018).
Baier, R., Romatschke, P. & Wiedemann, U. A. Dissipative hydrodynamics and heavy-ion collisions. Phys. Rev. C 73, 064903 (2006).
Glorioso, P., Delacrétaz, L., Chen, X., Nandkishore, R. & Lucas, A. Hydrodynamics in lattice models with continuous non-Abelian symmetries. SciPost Phys. 10, 015 (2021).
Torabian, M. & Yee, H.-U. Holographic nonlinear hydrodynamics from AdS/CFT with multiple/non-Abelian symmetries. J. High Energy Phys. 2009, 020 (2009).
Hoyos, C., Kim, B. S. & Oz, Y. Odd parity transport in non-Abelian superfluids from symmetry locking. J. High Energy Phys. 2014, 127 (2014).
Elze, H.-T. & Heinz, U. Quark-gluon transport theory. Phys. Rep. 183, 81–135 (1989).
Berges, J., Heller, M. P., Mazeliauskas, A. & Venugopalan, R. QCD thermalization: ab initio approaches and interdisciplinary connections. Rev. Mod. Phys. 93, 035003 (2021).
Majidy, S. et al. Critical phase and spin sharpening in SU(2)-symmetric monitored quantum circuits. Phys. Rev. B 108, 054307 (2023).
Swingle, B. Unscrambling the physics of out-of-time-order correlators. Nat. Phys. 14, 988–990 (2018).
Khemani, V., Vishwanath, A. & Huse, D. A. Operator spreading and the emergence of dissipative hydrodynamics under unitary evolution with conservation laws. Phys. Rev. X 8, 031057 (2018).
Roberts, D. A. & Yoshida, B. Chaos and complexity by design. J. High Energy Phys. 2017, 121 (2017).
Brown, A. R. & Susskind, L. Second law of quantum complexity. Phys. Rev. D 97, 086015 (2018).
Acknowledgements
This work received support from the John Templeton Foundation (award no. 62422) and the National Science Foundation (QLCI grant OMA-2120757). The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation or the University of Maryland. S.M. received support from the Vanier Canada Graduate Scholarships. T.U. acknowledges the support of the Joint Center for Quantum Information and Computer Science through the Lanczos Fellowship, as well as the Natural Sciences and Engineering Research Council of Canada, through the Doctoral Postgraduate Scholarship. N.Y.H. thanks the Institut Pascal for its hospitality during the formation of this paper, M. Fagotti for the discussions about GGEs, N. Mueller for the discussions about lattice gauge theories and hydrodynamics and C.D. White for MBL discussions.
Author information
Authors and Affiliations
Contributions
All authors contributed to the literature review for, and the drafting of, this work. N.Y.H. also contributed to the basic idea, organization and editing. S.M. handled much of the logistics.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks Janet Anders and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Majidy, S., Braasch, W.F., Lasek, A. et al. Noncommuting conserved charges in quantum thermodynamics and beyond. Nat Rev Phys 5, 689–698 (2023). https://doi.org/10.1038/s42254-023-00641-9
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-023-00641-9
This article is cited by
-
Classification of dynamical Lie algebras of 2-local spin systems on linear, circular and fully connected topologies
npj Quantum Information (2024)
-
Noncommuting charges can remove non-stationary quantum many-body dynamics
Nature Communications (2024)