UMBC CSEE Seminar Series
Resynchronization of circadian neurons and the east-west asymmetry of jet-lag recovery
Zhixin Lu
University of Maryland, College Park
1-2pm Friday, 21 April 2017, ITE 231
Cells in the brain’s Suprachiasmatic Nucleus (SCN) are known to regulate circadian rhythms in mammals. We model synchronization of SCN cells using the forced Kuramoto model, which consists of a large population of coupled phase oscillators (modeling individual SCN cells) with heterogeneous intrinsic frequencies and external periodic forcing. Here, the periodic forcing models diurnally varying external inputs such as sunrise, sunset, and alarm clocks. We reduce the dimensionality of the system using the ansatz of Ott and Antonsen and then study the effect of a sudden change of clock phase to simulate cross-time-zone travel. We estimate model parameters from previous biological experiments. By examining the phase space dynamics of the model, we study the mechanism leading to the difference typically experienced in the severity of jet-lag resulting from eastward and westward travel.
Zhixin Lu, PhD Candidate, joined the Nonlinear Dynamics and Chaos Group in the University of Maryland, College Park in 2011, as a Graduate Research Assistant in Dr. Edward Ott’s group. He acquired expertise in nonlinear dynamics and complex systems. Together with the colleagues from UMD, he used methods from nonlinear dynamics theory to investigate the synchronization of circadian neurons, the statistical properties of critical avalanching firing in integrate-and-fire neuron models, as well as dynamical behavior of artificial recurrent neuronal networks. His main research interests are the applications of nonlinear dynamics and the theory of complex networks to biological and artificial neural networks.
Host: Fow-Sen Choa; Organizer: Tulay Adali
About the CSEE Seminar Series: The UMBC Department of Computer Science and Electrical Engineering presents technical talks on current significant research projects of broad interest to the Department and the research community. Each talk is free and open to the public. We welcome your feedback and suggestions for future talks.
The post talk: Resynchronization of circadian neurons, 1pm Fri 4/21 appeared first on Department of Computer Science and Electrical Engineering.