ACM Tech Talk Series
A Practitioner’s Introduction to Deep Learning
Ashwin Kumar Ganesan, PhD student
1:00-2:00pm Friday, 17 November 2017, ITE325, UMBC
In recent years, Deep Neural Networks have been highly successful at performing a number of tasks in computer vision, natural language processing and artificial intelligence in general. The remarkable performance gains have led to universities and industries investing heavily in this space. This investment creates a thriving open source ecosystem of tools & libraries that aid the design of new architectures, algorithm research as well as data collection.
This talk (and hands-on session) introduce people to some of the basics of machine learning, neural networks and discusses some of the popular neural network architectures. We take a dive into one of the popular libraries, Tensorflow, and an associated abstraction library Keras.
To participate in the hands-on aspects of the workshop, bring a laptop computer with Python installed and install the following libraries using pip. For windows or (any other OS) consider doing an installation of anaconda that has all the necessary libraries.
- numpy, scipy & scikit-learn
- tensorflow / tensoflow-gpu (The first one is the GPU version)
- matplotlib for visualizations (if necessary)
- jupyter & ipython (We will use python2.7 in our experiments)
Following are helpful links:
Contact Nisha Pillai (NPillai1 at umbc.edu) with any questions regarding this event.
The post talk: A Practitioner’s Introduction to Deep Learning, 1pm Fri 11/17 appeared first on Department of Computer Science and Electrical Engineering.